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Abstract    Mineral resource estimation has long been plagued with the inher-
ent challenge of conditional bias. Estimation requires the specification of a num-
ber of parameters such as block model block size, minimum and maximum num-
ber of data used to estimate a block, and search ellipsoid radii.  The choice of 
estimation parameters is not an objective procedure that can be followed from one 
deposit to the next. Several measures have been proposed to assist in the choice of 
kriging estimation parameters to lower the conditional bias. These include the 
slope of regression and kriging efficiency  

The objective of this paper is to demonstrate that both slope of regression and 
kriging efficiency should be viewed with caution. Lowering conditional bias may 
be an improper approach to estimating metal grades, especially in deposits for 
which high cut-off grades are required for mining. A review of slope of regression 
and kriging efficiency as tools for optimization of estimation parameters is pre-
sented and followed by a case study of these metrics applied to an epithermal gold 
deposit. The case study compares block estimated grades with uncertainty distri-
butions of global tonnes and grade at specified cut-offs. The estimated grades are 
designed for different block sizes, different data sets and different estimation pa-
rameters, i.e., those geared towards lowering the conditional bias and those de-
signed for higher block grade variability with high conditional biases. 

Introduction 

When resource modelling by kriging, a number of estimation parameters must be 

established such as block model block size, minimum and maximum number of 

data used to estimate a block or search ellipsoid radii.  Arik (1990) studied the im-

pact of search parameters in two case studies for gold and molybdenum, and con-

sidered the drill density, skewness of the grade distribution and availability of a 

suitable geology model. The studies involved estimating with drillhole data and 

comparing against blasthole data. As Arik demonstrated and many resource mod-

ellers know, the choice of the estimation parameters is by no means an objective 

procedure that provides a simple recipe for all types of deposits.  
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This long-standing topic is not new and has been addressed by many authors. 

At the centre of the discussion is the issue of conditional bias, wherein the ex-

pected value of the true grade conditioned on the estimates is not equal to the es-

timated grade (Journel & Huijbregts, 1978; Olea, 1991): 

 

𝐸{𝑍|𝑍∗ = 𝑧} − 𝑧 ≠ 0 

 

The discussion among both theoreticians and practitioners revolves around how 

conditional bias affects the quality of the block grade estimates (McLennan & 

Deutsch, 2002). The first school of thought insists that the conditional bias should 

be as small as possible and must be dealt with, and the second school of thought 

believes that the conditional bias should be ignored and the variability of block es-

timates should be as high as the variability of underlying true block grades.  

Rivoirard (1987) suggested that the size of the kriging neighborhood should 

consider the weight given to the mean. If the mean is given a large weight, then 

the neighborhood should be expanded so as to increase the slope of regression and 

thereby reduce conditional bias. Conversely, if the weight of the mean is low, then 

a localized neighborhood is adequate. Krige introduced a metric called kriging ef-

ficiency (Krige, 1997), that correlates to the slope of regression. He contends that 

one should never accept conditional bias in an effort to reduce the smoothing ef-

fect of kriging (Krige, 1997; Krige et al., 2005). Deutsch et al. (2014) further ex-

panded on potential sub-optimality of the estimates due to large conditional biases 

reflected in slope of regression and in kriging efficiency measures. Deutsch pro-

posed a new expression of kriging efficiency to aid in the assessment of quality of 

estimated block grades.  

From a procedural perspective, Vann et al. (2003) introduced quantitative 

kriging neighborhood analysis (QKNA) to optimize the estimation parameters for 

selection of the minimum/maximum of number of samples, quadrant search, 

search neighbourhood, and block size. The proposed criteria for evaluating quality 

of block grade estimates include: slope of regression of true block grades on esti-

mated block grades; weight attached to the mean in simple kriging; distribution of 

kriging weights, and kriging variance. 

All of the above contributors have focused on metrics and efforts to minimize 

conditional bias. On the other end of the spectrum of this discussion, Isaaks (2005) 

argued that estimates cannot be both conditionally unbiased and globally accurate 

at the same time. The estimates may be close to conditionally unbiased but the his-

togram of block estimates is smoothed, which results in inaccurate predictions of 

the recoverable tonnes and grade above cut-off grades. He advocates that a condi-

tionally biased estimate is necessary to obtain a globally unbiased recoverable re-

source above cut-off grade. There is support that during the early stages of project 

feasibility assessments, it is more important to accurately predict the global recov-

erable reserves than to produce locally accurate estimates (Journel & Kyriakidis, 

2004). 

Despite valid points on both ends of the spectrum, it appears that the first 

school of thought has been winning the discussion in recent years. The authors no-
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ticed a substantial increase in application of those measures for optimization of es-

timation parameters. Some of the proposed measures for optimization of kriging 

estimates, such as slope of regression and kriging efficiency, are currently readily 

available in most commercial software. In some organizations, this quantitative 
approach has become standard in the resource estimation process irrespective of 
the stage of exploration and/or development of the mineral deposit. 

It appears that Isaaks’ sound argument for recoverable resources above an eco-
nomic cut-off grade, particularly in early stage projects, appears to have been for-
gotten in the popularization of a quantitative approach because of software acces-
sibility. In the wake of convenience, we seem to have lost the idea of a fit-for-
purpose model, including consideration for the stage of the project. 

The objective of this paper is to demonstrate that both slope of regression and 
kriging efficiency should be viewed with caution for optimizing estimation param-
ters. Lowering conditional bias may be an improper approach to estimating metal 
grades. In fact, it might be outright wrong especially in deposits for which high 

cut-off grades are required for mining. 

This paper presents a summary of the two typical tools, suggested for optimiza-

tion of estimation parameters, slope of regression and kriging efficiency, followed 

by application of these metrics applied to an epithermal gold deposit. The case 
study compares block estimated grades with uncertainty distributions of global 
tonnes and grade at specified cut-offs. The estimated grades are designed for dif-
ferent block sizes, different data sets and different estimation parameters, i.e., 
those geared towards lowering the conditional bias and those designed for higher 
block grade variability with high conditional biases. 

Two Proposed Measures for Optimization of Estimation 

Parameters 

Block ordinary kriging is one of the most common estimation methods used for 

resource modeling in the mining industry (Journel & Huijbregts, Mining 

Geostatistics, 1978) (Sinclair & Blackwell, 2002). Each block estimate can be 

written as: 

 

𝑍∗(u) = ∑ 𝜆𝑖𝑍(u𝑖)

𝑛

𝑖=1

 

 

Where Z
*
(u) represents the estimated block grade at location vector u, i is the 

kriging weight assigned to sample Z(ui). The resource model, comprised of esti-

mated block grade at all relevant locations, forms the distribution of estimated 

grades that is the basis for a mineral resource statement. 

Amongst other considerations, such as geologic confidence, grade continuity 

and database quality, a cut-off grade is used to differentiate between those blocks 
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that are reported as a mineral resource (Sinclair and Blackwell, 2002). This cut-off 

grade is applied throughout a project, depending on the method of mineral extrac-

tion. The smoothness of this estimated grade distribution, relative to the cut-off 

grade, is then paramount to this discussion of accurately predicting the global 

mineral resource for a project. 

The smoothness of the estimated grade distribution depends not only on the 

quantity and location of conditioning data, and the modelled variogram, but also 

on the estimation parameters such as minimum/maximum number of samples, size 

of search neighbourhood and type of search. While there are a number of suggest-

ed measures for assistance in the choice of optimal kriging estimation parameters, 

such as slope of regression, kriging efficiency, or weight of the mean from simple 

kriging, this paper will only focus on the first two due to their prominent use in the 

mineral resources sector.  

Slope of Regression 

When kriged estimated Z* block grades are plotted on X axis and unknown true Z 

block grade are plotted on Y axis, then the regression of true values given the es-

timates is an indication of the conditional bias in the estimate (Journel & 

Huijbregts, 1978) (Figure 1). Conditional bias takes place when the expected val-

ue of true block grade Z conditional to estimated block grade Z* is not equal to the 

estimated grade. The slope of the regression b is often used to summarize the con-

ditional bias of the kriging estimate: 

 𝐸{𝑍|𝑍∗ = 𝑧} ≈ a + bz (1) 
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Figure 1. Schematic illustration of conditional bias (McLennan & Deutsch, 2002). The es-

timates Z* are on the X axis, and the true block grades Z are on the Y axis 

Naturally, the block true values are unknown, but the slope b can be calculated 

once a variogram model is known by the following formula: 

 𝑏 =
𝐶𝑜𝑣 (𝑍,𝑍∗)

𝜎𝑍∗
2  (2) 

To calculate the slope from formula (2) it is enough to know kriging weights 

attached to samples used to estimate a block and to know covariances between 

samples, and samples and the block. Note that actual sample grades are not taken 

into account in the calculation. The slope will be identical in both lower and high-

er grade areas, although potentially higher conditional bias, and by extension low-

er slope of regression, could be expected in the high grade areas. 

Kriging Efficiency 

Kriging efficiency, introduced by Krige (1997), is considered a good measure of 

effectiveness of kriging estimates. The kriging efficiency can be calculated from 

two byproducts of kriging procedure, block variance (𝜎𝐵𝑙
2 ) and kriging variance 

(𝜎𝑘𝑟
2 ): 

 𝐾𝐸 =
𝜎𝐵𝑙

2 − 𝜎𝑘𝑟
2

𝜎𝐵𝑙
2  (3) 
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Kriging efficiency values can range from negative (poor estimates) to a maxi-

mum value of 1 (very good estimates). As with the slope of regression, actual as-

say data do not get used in the calculation. The results are purely dependent on a 

variogram model and on data locations used to estimate the blocks. Krige men-

tions that based on a number of case studies he conducted there is a correlation be-

tween the efficiency and the slope of regression (Krige, 1997). For the increased 

slope value there is also an increase in kriging efficiency. 

Case Study 

This case study is based on an epithermal gold deposit in British Columbia, local-

ized along a major fault. Gold bearing breccia, vein and stockwork development 

occurs along the fault and in subsidiary dilational structures, Gold mineralization 

roughly parallels the fault. The deposit has been drilled out by more than 500 

closely spaced holes drilled roughly on a 25x25 m grid. At one time, originally 

modelled from the full set of data, the lowest grade domain in the deposit had an 

average grade close to 0.7 g/t and the highest grade domain had an average gold 

grade more than 2 g/t with relatively low coefficient of variation at 1.3. 

A portion of the deposit has been chosen for simulating gold grades on a dense 

4x4x4 m grid. The chosen portion of the deposit does not differentiate between 

different geological units. This simplified approach, considering closely spaced 

large number of drill holes, is not considered detrimental to the results of the 

study. A typical realization with average grades very similar to declustered assay 

grades from the drill holes has been chosen for this study. Maximum range of gold 

continuity is at 160° azimuth and is much shorter in vertical direction and at 70° 

azimuth (Figure 2). The relative nugget effect of 25% and ranges of continuity 

spanning from 40 to 60 m are quite typical and encountered in many gold depos-

its. Note that although the following analysis is based on simulated grades, con-

sidering a large number of drill holes in a relatively small area from which the 

simulated grades are derived, the simulated grades do represent a distribution that 

closely resembles actual grades in this deposit. 
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Figure 2: Modelled correlograms from simulated grades (true data) and from exploration 

drilling 

The simulated deposit, with an average grade of 1.26 g/t, has been “drilled” 

with “exploration” holes. The location of the “exploration” holes was essentially 

random with some limitations on allowed distances between the holes and on gen-

erally higher density of drilling in higher grade areas. Two data sets were created: 

The first set (Large Data Set) represents 281 holes drilled at 30 m spacing outside 

of high grade mineralization and at down to 16 m spacing within higher grade re-

gions. The second set (Small Data Set) represents more typical case with 156 drill 

holes drilled at 40 m distance in lower grade areas and down to 20 m in higher 

grade areas (Figure 3). Drill hole spacing in the second data set is similar to what 

would be typically expected in a gold deposit at the early stages of exploration.  

The smaller data set was used for variogram modelling. As is common in prac-

tice, the best continuity was modelled for directions slightly different than those 

known from simulated grades. Moreover, the modelled variogram parameters 

were different from those applied for the simulated reference data. Each data sub-

set was used to estimate gold grades by ordinary kriging for different block sizes 

and different number of data allowed to estimate the blocks. Vertical block size 

was kept constant at 8 m with increased sizes along easting and northing direc-

tions. 

For strongly conditionally biased estimates a small number of data was used 

with a minimum of 4 and a maximum of 12 composite assay grades (referred to as 

the “suboptimal” design). In an attempt to lower the conditional bias, blocks were 

estimated with a large search ellipsoid with a minimum of 24 and maximum of 64 

composite assays; this is referred to as the “optimal” design. For each estimated 

block grade, a slope of regression and kriging efficiency was calculated. In addi-

tion, the estimated block grades were compared to true block grades. 
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Figure 3: Plan view of true block grades and data locations: (a) large data set; (b) small, 

more typical, data set 

Results 

Figure 4 shows how slope of regression and kriging efficiency change for different 

block sizes, different data sets, and estimation parameters used. As discussed, 

modification to the estimation parameters was limited to a number of data used 

starting from “poorly-designed” not optimal estimation procedure with small 

number of data used for the estimation, and ending with “well-designed” optimal 

process with large number of data used for the estimation. As expected, the opti-

mal estimation procedure results in higher slope of regression and increases 

kriging efficiency. 

It is interesting that for the small data set used in the estimation, the actual 

block size did not have any effect on the slope of regression and kriging efficien-

cy. On the other hand, when the large data set was used there was gradual increase 

in kriging efficiency with the increased block size. Note that kriging efficiency is 

quite low regardless of the estimation type. As expected, using the large number 

of data (optimal case) to estimate block grades resulted in a substantial increase in 

the slope of regression, i.e., it resulted in substantial decrease of conditional bias. 

Not surprisingly, the slope of regression is quite high for the large data set and 
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large number of data used for the estimation. These graphs clearly indicate that us-

ing a lot of data during the estimation process lowers conditional bias and increas-

es kriging efficiency. 

Now that it has been established that applying more data to the block estimates 

increases slope of regression and by extension decreases conditional bias, the next 

step involved comparisons of actual true block grades with the estimated grades 

for different cut-offs. Figures 5 and 6 show relative tonnage and grade differences 

between true and estimated block grades at the 1.0 g/t cut-off for optimal and not 

optimal estimates from the small data and the large data sets, respectively. Both 

figures show that despite high conditional bias in the suboptimal design, the esti-

mated tonnes and grades are closer to reference tonnage and grade in the deposit. 

This is also true for the estimates from the large data set, although here the differ-

ences between the not optimal and optimal models are smaller. Note that, as pre-

sented in Figure 6, at 20 m block size estimated tonnes and grade are very similar 

to reference tonnes and grade. At the same time it would be misleading to con-

clude that this block size produced superior estimates.  

In fact, the reported tonnage and grade from different block sizes is quite simi-

lar (Figure 7). It just happens that the estimated tonnes and grade in this specific 

deposit are comparable to recoverable tonnes and grade at the selective mining 

unit (SMU) size higher than 20 m; roughly the size of half of drill hole spacing. 

This is an important observation that suggests it does not matter what block size is 

used for estimating resources. Reported resource at 8 m or 20 m block size will be 

similar, but the 20 m block appears to approach the size that, if successfully ap-

plied during mining operation, would result in actually recovered tonnes and grade 

very similar to those estimated. As long as there is no connection made between a 

block size used and actual SMU considered for mining there is nothing particular-

ly wrong with estimates based on a small block size. 

 

 

Figure 4: Slope of regression (a) and kriging efficiency (b) for blocks estimated from two 

data sets for different block sizes and different estimation parameters 
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Figure 5: Relative tonnage and grade differences between estimated and true block grades 

at 1.0 g/t cut-off. The blocks were estimated from typical, smaller data set.  

 

Figure 6: Relative tonnage and grade differences between estimated and true block grades 

at 1.0 g/t cut-off. The blocks were estimated from large data set 

An important result of the optimization of the estimation process is high 

smoothing of the estimated block grades. The smoothing effect may result in large 

differences between estimated and actual metal content at higher cut-off values. 

For block estimates from the typical (smaller) data set, the estimated metal content 

at higher cut-offs may be as much as 70-80% lower than the actual metal content 

(Figure 8) for the ‘optimized’ parameters, while the ‘sub-optimal’ model yields 

50-60% less metal content relative to the reference. Similar conclusions can be 

made for the larger data set, with percent differences ranging from 20-30% for the 

sub-optimal model and 30-50% for the optimal model. Therefore, it is obvious that 

the lower the conditional bias the higher the smoothing effect that can be expected 

when estimating from sparsely spaced data. The interesting trend, however, is that 

for both the sparsely and densely sampled data sets, the sub-optimal set of parame-

ters yield the closest estimate of contained metal for cut-off grades above the 1.25 

g/t mean grade.  
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Figure 7: Estimated from small data set grade and proportion of tonnage above 1.0 g/t cut-

off for different block sizes  

  

Figure 8: Relative metal losses in estimated block grade models for different cut-offs in 16 

m block models 

The final task considered comparison of the estimation models with conditional 

simulation of the small data set. The purpose of this exercise was to compare the 

estimation model to a model constructed using a method that is considered to 

avoid conditional bias altogether (McLennan & Deutsch, 2002) (Journel & 

Kyriakidis, 2004). The reference distribution was obtained via p-field simulation 

wherein the local distributions of uncertainty considered a local trend model. For 

this task, sequential Gaussian simulation was performed with no consideration for 

any trends, and variograms were calculated based on the small data set. As with 
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the estimation models, the continuity directions vary slightly from those of the 

reference model. Multiple realizations were then generated at a 2x2x2 m resolu-

tion, and subsequently block averaged to various block sizes: 8, 12, 16 and 20 m.  

The uncertainty in grades and tonnage at a series of different cut-off grades 

were assessed, and the combined impact is summarized as contained metal at dif-

ferent cut-off grades (Figure 9). The corresponding sensitivity curves for the sub-

optimal and optimal estimation models, along with the reference model, are shown 

for comparison. Three interesting observations are made. Firstly, at a cut-off grade 

up to the mean grade of 1.25 g/t, there is no appreciable difference between the 

contained metal estimated using the optimal or sub-optimal parameters. Secondly, 

for the four block sizes considered, the sub-optimal parameters yield estimates 

closest to the reference model at higher cut-off grades. Thirdly, the simulation ap-

proach, which is considered to be a non-biased method, yields the distributions of 

uncertainty in contained metal that encompasses the reference data. This latter ob-

servation is important, particularly as a reference model is never available in prac-

tice for benchmarking purposes. This indicates that a conditional simulation ap-

proach can be used to validate the estimated tonnage, grades and ultimately metal 

when determining an appropriate set of estimation parameters. 
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Figure 9: Contained metal curves for estimated block models for different cut-off grades at 

8m, 12m, 16m and 20m block sizes. 

Discussion 

Both slope of regression and kriging efficiency assume global stationarity within a 

specifically modelled domain. Mineral deposits are not stationary, even within a 

specific estimation domain. In an estimation domain there are always small re-

gions of high and small regions of very low grades. Slope of regression and 

kriging efficiency formulas do not take into account the fact that true variance of 

estimation errors depends on data values. In regions with higher grade or in re-

gions with local data having more variance than in the whole domain, fluctuation 

of errors is larger. Disregarding these local changes in variability may lead to es-

timated resources that steer away from what would be expected of a typical re-

source estimate.  
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A resource block model should not be designed to produce an inventory of re-

coverable resource that is based on SMU size much larger than would generally be 

considered for mining, only because for this SMU size, when mined, the resource 

model will turn out to be correct. A deposit is never mined according to a resource 

block model. A decision on what will be mined will be based on grade control 

drilling, necessary both in open pit and underground mining. A resource geologist 

should strive to produce a block model that predicts, reasonably well, the tonnage 

and grade that a mine can expect to achieve over the life of the mine, once it has 

sorted out its grade control procedures. In addition, the resource block models are 

often used for dilution calculations, or blending issues. A block model designed 

from optimizing slope of regression, or block size will not serve this purpose.  

In short, optimizing kriged block estimates with slope of regression or kriging 

efficiency measures may lead to block models that do not adequately reflect true 

block grades. It is tempting and easy to use slope of regression and kriging effi-

ciency for validation of block estimated grades. Those measures are commonly 

available in commercial software packages. Although theoretically high slope of 

regression, i.e. low conditional bias, is considered necessary for good quality es-

timates, in practice this approach may be outright harmful if the objective of the 

study is to predict global resource quantities above an economic cut-off grade. 

Both measures are a reflection of a modelled variogram and data locations and do 

not take into account actual assay values, or their variability in the vicinity of an 

estimated block. Moreover, it is often quite difficult to construct a reliable vario-

gram model, particularly in early exploration stages, and relying on its metrics to 

design “best” resource estimates cannot be considered best practice.  

Based on the presented case study, there is strong indication that it is better to 

have conditionally biased block estimates for global resource quantities required 

for a potential investment decision, life-of-mine planning and/or development de-

cisions. Once a cut-off is applied to block estimated grades for reporting or further 

mining studies, it is better to have unsmoothed conditionally biased block esti-

mates.  In this context of achieving globally accurate predictions, it looks like the 

onus is back on a resource geologist to design estimation parameters that produce 

a realistic block model that reflects the underlying true block grades the best way 

possible.  
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