In contrast to Zamdela, AJ Jacobs and Leitrim, where the peak concentration was definitely shown to be from SO and Natref, only about 26%, 30% and 38% of the observed concentration was simulated at Eco Park, Three Rivers and Sharpeville respectively. Although this may still have resulted from SO and Natref, there is also a strong likelihood that more localised sources may have added to the observed peak. Other sources of NO₂ concentrations are also observed at these sites in the polar plots (Figure 5-60 for Eco Park, Figure 5-61 for Three Rivers and Figure 5-62 for Sharpeville). This is also illustrated by the 99th percentile that indicates a notable fraction of unaccounted for concentrations.

Subsequently, fractional biases (i.e. using the 99th percentile simulated concentrations and the estimated background concentration) were calculated for the monitoring stations within the study area. The results are summarised in Figure 5-71. The fractional bias of the means and standard deviations for AJ Jacobs indicated an over-prediction of the simulated NO₂ concentrations. The fractional bias of the means and standard deviations for Leitrim and AJ Jacobs were within -0.67 to +0.67, clearly showing good model performance. The model's simulations are shown to within the acceptable model performance range (-2.0 to +2.0) at Three Rivers, Sharpeville, Eco Park and Zamdela.

Figure 5-71: Fractional bias of means and standard deviation for NO₂

5.1.7 Scenario Emission Inventory

Dispersion modelling included all Natref stack emission sources in all scenarios. The source parameters and emissions for Scenario 1 operations, as provided by Natref, is given in Table 5-19. The SO₂ emissions with and without SRU as well as the SRU availability per scenario are given in Table 5-20.

	Height	Diameter		Actual		Emission	rate (g/s)	
Source name	of Release Above Ground (m)	at Stack Tip / Vent Exit (m)	Actual Gas Exit Temperature (°C)	Gas Exit Velocity (m/s)	SO2	NO _X as NO ₂	Particulates	CO
Main Stack	145.0	5.5	267	16.96	286.11	46.39	30.56	32.94
B14001	26.5	1.37	373	4.89	0.13	0.28	0.04	0.32
B14002	24.56	0.99	264	3.57	0.13	0.05	0.03	0.43
B14005	62.0	1.87	205	5.86	2.08	0.70	0.24	0.00
B14006	27.42	1.60	276	2.63	0.58	0.27	0.09	0.09
B17004	20.02	0.91	307	4.84	0.53	0.14	0.05	4.0 x 10 ⁻³
B25001	19.15	1.52	302	27.45	5.60	3.19	0.57	0.77

Table 5-19: Source emissions for baseline conditions provided for Natref (units: g/s)

Table 5-20: SO₂ emissions with and without SRU and the SRU availability per scenario for Natref

Source name	SO ₂ emissions <u>with</u> SRU (g/s)	SO₂ emissions <u>without</u> SRU (g/s)	SRU availability (annual percentage (%))				
Scenario 1							
Main Stack	286.11	1 307.39	100				
	Scenario 2 (At New Plant E	Emission Standards)					
Main Stack	286.11	1 307.39	99				
Scenario 3							
Main Stack	286.11	1 307.39	95				

5.1.8 Model Results

Air quality standards are fundamental tools to assist in air quality management. The NAAQS (Section 5.1.2.2) are intended to reduce harmful effects on health of the majority of the population, including the very young and the elderly. In this section, predicted ambient concentrations of criteria pollutants at specific sensitive receptors are compared against the promulgated local NAAQS (Table 5-2).

Prior to dispersion modelling, 42 receptors were identified in the vicinity of Natref (within the 57-by-57 km modelling domain). Sensitive receptors included residential areas, schools, hospitals and clinics, monitoring stations (Figure 5-72 and Table 5-21). Ambient air quality monitoring stations (AQMS) were the first receptors identified because comparison of the predicted concentrations could be compared with measured concentrations for model validation. Schools, hospitals and clinics within the domain were identified and included as sensitive receptors in the dispersion model (full list provided in Appendix J). All receptors are presented in the isopleth plots, where the AQMS are included in results figures and the 20 closest receptors are included in the results tables at increasing distance from the centre of Natref.

Figure 5-72: Sensitive receptors identified for assessment of impact as a result of Natref Operations

Receptor code name ^(a)	Receptor details	Distance from centre of operations (km) ^(b)
Zamdela	VTAPA Zamdela monitoring station	4.2
Leitrim	Sasol Leitrim monitoring station	5.1
AJ Jacobs	Sasol AJ Jacobs monitoring station	3.5
EcoPark	Sasol EcoPark monitoring station	3.8
Sharpeville	VTAPA Sharpeville monitoring station	13.0
Three Rivers	VTAPA Three Rivers monitoring station	21.8
34	HTS Secondary School	2.3
43	Sasolburg Provincial Hospital	3.0
52	Sasolburg Clinic	3.2
24	Lumiere Primary School	3.3
14	AJ Jacobs Primary School	3.3
19	Fonteine Primary School	3.4
25	Malakabeng Primary School	3.6
15	Bofula-Tshepe Primary School	4.0
29	Tsatsi Primary School	4.0
32	Cedar Secondary School	4.0
51	Zamdela Hospital Zumayear	4.1
42	Vaalpark Hospital	4.1

Table	5-21:	Receptors	identified for	assessment	of im	oact as a	a result	of Natref	emissions

Receptor code name ^(a)	Receptor details	Distance from centre of operations (km) ^(b)
38	Sasolburg High School	4.1
49	Clinic A Zamdela	4.2
33	Fakkel Secondary School	4.3
37	Nkopoleng Secondary School	4.3
36	Kahobotjha-sakubusha Secondary School	4.3
35	Iketsetseng Secondary School	4.3
48	Clinic B Zamdela	4.3
39	Vaalpark Articon SecondarySchool	4.4

Since the focus of the study is to illustrate the relative changes in ambient concentrations of pollutants theoretically arising from different point source emission scenarios, the predicted concentration differences from scenario to scenario were provided as percentage increase or decrease over the modelled Scenario 1 ($C_{Scenario 1}$).

 $\frac{C_{S, Scenario 2/3} - C_{S, Scenario 1}}{C_{Scenario 1}}$

Equation 1

5.1.8.1 Criteria pollutants

The findings for each of the criteria pollutants (SO₂, NO₂, CO and PM) are presented for Natref in three forms. The first figure presents the predicted pollutant concentration (99th percentile) at the AQMS (Table 5-21) for each of the emission scenarios relative to the appropriate NAAQS. A table then presents the percentage change in ground-level concentrations between the emission scenarios and Scenario 1 at the AQMS and 20 closest sensitive receptors (Table 5-21). Finally, isopleth plots have been included for the all relevant emission scenarios and pollutants.

5.1.8.1.1 Sulfur dioxide (SO₂)

Ambient concentrations of SO₂ as a result of Natref scenarios are predicted to fall below the NAAQS at the AQMS (Figure 5-73 to Figure 5-75) and receptors (Table 5-22 to Table 5-24). An increase in ambient hourly SO₂ concentrations are evident from Scenario 1 to Scenario 2 and Scenario 3, by more than 100% (Table 5-22 to Table 5-24). Ambient hourly SO₂ concentrations are within NAAQS for all scenarios.

It should be noted that the results are provided at the 99th percentile for comparison to NAAQS. With the SRU availability for Scenario 2 and Scenario 3 being 99% and 95% respectively, the hourly SO₂ ground level concentrations for these two scenarios are the same, effectively representing impacts for when the SRU is not on. For Scenario 1 (100% SRU availability) the SO₂ hourly impacts reflect ground level concentrations for when the SRU is on.

Isopleth plots are presented for all averaging periods ground-level SO₂ concentrations as a result of all emission scenarios for Natref, as per the figure numbers below:

Scenario	Hourly	Daily	Annual
Scenario 1 (100% SRU availability)	Figure 5-76	Figure 5-79	Figure 5-82
Scenario 2 (99% SRU availability)	Figure 5-77	Figure 5-80	Figure 5-83
Scenario 3 (95% SRU availability)	Figure 5-78	Figure 5-81	Figure 5-84

Figure 5-73: Simulated hourly SO₂ concentrations (99th percentile) at AQMS for Natref

Figure 5-74: Simulated daily SO₂ concentrations (99th percentile) at AQMS for Natref

Figure 5-75: Simulated annual SO₂ concentrations at AQMS for Natref

	Hourly SO ₂ (99 th percentile)						
Recentor	Scenario 1 (100% SRU availability)	Scenario 2 (99% S	SRU availability)	Scenario 3 (95% SRU availability)			
Кесерко	Concentration (μg/m³)	Concentration (µg/m³)	Relative change	Concentration (µg/m³)	Relative change		
Zamdela AQMS	35.4	158.5	347.5%	158.5	347.5%		
Leitrim AQMS	34.3	153.2	346.9%	153.2	346.9%		
AJ Jacobs AQMS	26.0	113.3	335.8%	113.3	335.8%		
Eco Park AQMS	19.4	86.2	344.1%	86.2	344.1%		
Sharpeville AQMS	5.1	22.7	343.8%	22.7	343.8%		
Three Rivers AQMS	4.1	18.2	343.9%	18.2	343.9%		
Malakabeng Primary School	35.3	155.6	341.4%	155.6	341.4%		
Cedar Secondary School	39.6	176.1	345.3%	176.1	345.3%		
Bofula- Tshepe Primary School	35.0	155.6	344.9%	155.6	344.9%		
Clinic A Zamdela	36.1	160.8	345.9%	160.8	345.9%		
Zamdela Hospital Zumayear	31.4	140.6	347.3%	140.6	347.3%		
Iketsetseng Secondary School	35.0	155.6	344.9%	155.6	344.9%		
Clinic B Zamdela	38.8	172.9	346.1%	172.9	346.1%		
Tsatsi Primary School	30.3	134.5	344.6%	134.5	344.6%		
Isaac Mhlambi Primary School	35.8	159.7	345.5%	159.7	345.5%		
Nkopoleng Secondary School	29.2	131.0	348.4%	131.0	348.4%		
HTS Secondary School	34.1	146.0	327.7%	146.0	327.7%		
Szamdela Community Clinic	29.5	131.1	345.2%	131.1	345.2%		
AJ Jacobs Primary School	25.8	114.6	345.0%	114.6	345.0%		
Theha Setjhaba Primary School	29.3	131.5	348.7%	131.5	348.7%		
Sasolburg Clinic	32.3	140.9	336.5%	140.9	336.5%		
Credo Primary School	32.3	144.5	346.9%	144.5	346.9%		
Lehutso Primary School	26.1	116.7	346.9%	116.7	346.9%		
Harry Gwala Clinic Creche	29.8	132.5	345.5%	132.5	345.5%		
Kahobotjha-sakubusha Secondary School	26.3	113.9	333.6%	113.9	333.6%		
Sasolburg Provincial Hospital	35.0	153.1	337.8%	153.1	337.8%		

Table 5-22: Simulated baseline hourly SO₂ concentrations and the theoretical change in concentrations relative to Scenario 1 at the AQMs and 20 closest receptors

	Daily SO ₂ (99 th percentile)						
Pecentor	Scenario 1 (100% SRU availability)	Scenario 2 (99% S	RU availability)	Scenario 3 (95% SRU availability)			
Кесерког	Concentration (μg/m³)	Concentration (µg/m³)	Relative change	Concentration (µg/m³)	Relative change		
Zamdela AQMS	10.5	15.8	49.8%	45.2	328.4%		
Leitrim AQMS	9.3	10.6	14.4%	41.3	345.0%		
AJ Jacobs AQMS	10.0	19.4	92.6%	43.1	329.3%		
Eco Park AQMS	6.4	8.9	37.8%	28.4	341.5%		
Sharpeville AQMS	2.2	4.2	94.7%	9.4	333.7%		
Three Rivers AQMS	1.7	2.6	57.7%	7.5	354.8%		
Malakabeng Primary School	9.9	19.2	93.1%	42.8	330.8%		
Cedar Secondary School	11.2	17.4	55.5%	47.4	324.0%		
Bofula- Tshepe Primary School	10.4	15.7	50.0%	44.8	328.8%		
Clinic A Zamdela	10.7	16.3	51.6%	46.6	334.4%		
Zamdela Hospital Zumayear	8.4	17.5	108.2%	36.7	336.5%		
Iketsetseng Secondary School	10.4	15.7	50.0%	44.8	328.8%		
Clinic B Zamdela	9.9	15.0	51.7%	44.2	345.4%		
Tsatsi Primary School	7.9	15.2	92.5%	35.4	348.1%		
Isaac Mhlambi Primary School	10.4	16.0	53.4%	45.4	336.6%		
Nkopoleng Secondary School	7.9	16.3	106.0%	33.9	327.2%		
HTS Secondary School	12.3	24.1	96.6%	49.1	300.0%		
Szamdela Community Clinic	8.5	12.2	43.8%	37.2	337.1%		
AJ Jacobs Primary School	10.0	19.0	90.5%	42.1	323.1%		
Theha Setjhaba Primary School	8.4	13.1	56.1%	36.5	333.2%		
Sasolburg Clinic	10.8	17.2	59.3%	44.3	309.6%		
Credo Primary School	8.6	10.5	21.8%	38.6	346.8%		
Lehutso Primary School	7.2	12.0	66.8%	31.3	335.5%		
Harry Gwala Clinic Creche	7.7	10.8	40.8%	34.5	349.2%		
Kahobotjha-sakubusha Secondary School	9.0	13.7	51.4%	39.4	336.8%		
Sasolburg Provincial Hospital	12.3	18.0	45.9%	54.2	339.6%		

Table 5-23: Simulated baseline daily SO₂ concentrations and the theoretical change in concentrations relative Scenario 1 at the AQMs and 20 closest receptors

	Annual SO ₂						
Pecentor	Scenario 1 (100% SRU availability)	Scenario 2 (99%	SRU availability)	Scenario 3 (95% SRU availability)			
	Concentration (μg/m³)	Concentration (µg/m³)	Relative change	Concentration (μg/m³)	Relative change		
Zamdela AQMS	1.3	1.4	3.1%	1.6	15.4%		
Leitrim AQMS	1.5	1.5	3.2%	1.7	16.2%		
AJ Jacobs AQMS	1.0	1.0	2.8%	1.1	14.0%		
Eco Park AQMS	0.6	0.6	3.2%	0.7	16.2%		
Sharpeville AQMS	0.2	0.2	3.1%	0.2	15.3%		
Three Rivers AQMS	0.2	0.2	3.3%	0.2	16.3%		
Malakabeng Primary School	1.3	1.4	2.9%	1.5	14.4%		
Cedar Secondary School	1.6	1.6	3.1%	1.8	15.6%		
Bofula- Tshepe Primary School	1.3	1.4	3.1%	1.5	15.3%		
Clinic A Zamdela	1.4	1.4	3.1%	1.6	15.3%		
Zamdela Hospital Zumayear	1.2	1.2	2.9%	1.3	14.6%		
Iketsetseng Secondary School	1.3	1.4	3.1%	1.5	15.3%		
Clinic B Zamdela	1.6	1.6	3.2%	1.8	15.8%		
Tsatsi Primary School	1.1	1.1	2.9%	1.2	14.5%		
Isaac Mhlambi Primary School	1.5	1.5	3.1%	1.7	15.7%		
Nkopoleng Secondary School	1.1	1.1	3.0%	1.2	14.8%		
HTS Secondary School	1.4	1.4	2.4%	1.6	12.1%		
Szamdela Community Clinic	1.1	1.2	3.1%	1.3	15.4%		
AJ Jacobs Primary School	1.0	1.0	2.8%	1.1	13.8%		
Theha Setjhaba Primary School	1.1	1.2	3.1%	1.3	15.4%		
Sasolburg Clinic	1.1	1.2	2.7%	1.3	13.6%		
Credo Primary School	1.4	1.4	3.2%	1.6	16.2%		
Lehutso Primary School	1.1	1.1	3.1%	1.2	15.3%		
Harry Gwala Clinic Creche	1.3	1.3	3.2%	1.5	16.1%		
Kahobotjha-sakubusha Secondary School	0.9	0.9	2.9%	1.0	14.7%		
Sasolburg Provincial Hospital	1.1	1.1	3.0%	1.3	15.2%		

Table 5-24: Simulated baseline annual SO₂ concentrations and the theoretical change in concentrations relative to Scenario 1 at the AQMs and 20 closest receptors

Figure 5-76: Simulated hourly SO₂ concentrations (99th percentile) as a result of Scenario 1 (100% SRU availability)

Figure 5-77: Simulated hourly SO₂ concentrations (99th percentile) as a result of theoretical compliance with new plant emission standards, Scenario 2 (99% SRU availability)

Figure 5-78: Simulated hourly SO₂ concentrations (99th percentile) as a result of Scenario 3 (95% SRU availability)

Figure 5-79: Simulated daily SO₂ concentrations (99th percentile) as a result of Scenario 1 (100% SRU availability)

Figure 5-80: Simulated daily SO₂ concentrations (99th percentile) as a result of theoretical compliance with new plant emission standards, Scenario 2 (99% SRU availability)

Figure 5-81: Simulated daily SO₂ concentrations (99th percentile) as a result of Scenario 3 (95% SRU availability)

Figure 5-82: Simulated annual SO₂ concentrations as a result of Scenario 1 (100% SRU availability)

Figure 5-83: Simulated annual SO₂ concentrations as a result of theoretical compliance with new plant emission standards, Scenario 2 (99% SRU availability)

Figure 5-84: Simulated annual SO₂ concentrations as a result of Scenario 3 (95% SRU availability)

5.1.8.1.2 Nitrogen dioxide (NO₂)

Emission rates for NO₂ does not differ for the three scenarios. Only simulated baseline conditions were therefore provided in this section (Figure 5-85 and Figure 5-86). The ambient NO₂ concentrations due to baseline conditions Natref operations is within hourly and annual NAAQS (Figure 5-87 and Figure 5-88).

Figure 5-85: Simulated hourly NO₂ concentrations at AQMS for Natref

Figure 5-86: Simulated annual NO₂ concentrations at AQMS for Natref

Figure 5-87: Simulated hourly NO₂ concentrations (99th percentile) as a result of baseline emissions

Figure 5-88: Simulated annual NO₂ concentrations as a result of baseline emissions

5.1.8.1.3 Particulate Matter (PM₁₀ and PM_{2.5})

Although the PM emissions from Natref do not change for the three scenario's, the contribution of sulphates (secondary particulates) differ (due to the SRU availability). The impacts for Scenario 1 result in low ground-level concentrations of PM; less than 2 µg/m³ at all AQMS (Figure 5-89). Simulated annual PM concentrations are less than 0.25 µg/m³ at all AQMS (Figure 5-90). Scenario 2 results in an increase of daily ground-level PM concentrations by up to 114%, while Scenario 3 result in an increase in daily ground-level PM concentrations by more than 400% (Table 5-25 and Table 5-26).

For particulate matter, NAAQS are available for PM_{10} and $PM_{2.5}$. Ambient air quality impacts for both particulate fractions (i.e. PM_{10} and $PM_{2.5}$) thus need to be considered. Simulated concentrations of particulate matter (PM) are conservatively assumed to be $PM_{2.5}$ since it is not possible to establish the $PM_{2.5}/PM_{10}$ split of emissions from Natref only. Figure 5-89 and Figure 5-90 present predicted PM concentrations at the AQMS relative to both the PM_{10} and $PM_{2.5}$ NAAQS.

PM₁₀ and PM_{2.5} measurements at the AQMS suggest a 50% contribution of PM_{2.5} to PM₁₀; however, the sources contributing to the PM signature at the AQMS are varied, including the Natref sources, other industrial sources, windblown particulates, vehicles, domestic fuel burning, mining, agriculture, and power generation. The range of the 2015 – 2017 PM_{2.5}:PM₁₀ ratios at the AQMS in the Sasolburg domain ranged between 0.31 and 0.59 (Section 5.1.5.4); while the urban population-weighted average across South Africa in 2000 - reported by Norman *et al.* (2007) - was 0.57. A study in the Vaal Triangle used the PM_{2.5}:PM₁₀ ratio of 0.59 based on the concentrated industrial activity in the area (Witi, 2005). This value (0.59) is slightly more conservative than the measured ambient data and the population-weighted country average.

Based on the conservative assumption that all PM is in the PM_{2.5} fraction, the simulated daily PM_{2.5} concentrations comply with the current daily ($40 \ \mu g/m^3$) and annual ($20 \ \mu g/m^3$) PM_{2.5} NAAQS, for all scenarios (Table 5-25 and Table 5-26).

Isopleth plots are presented for all averaging periods ground-level PM concentrations as a result of all scenarios for Natref, as per the figure numbers below:

Scenario	Daily	Annual
Scenario 1 (100% SRU availability)	Figure 5-92	Figure 5-95
Scenario 2 (99% SRU availability)	Figure 5-93	Figure 5-96
Scenario 3 (95% SRU availability)	Figure 5-94	Figure 5-97

Figure 5-89: Simulated daily PM concentrations (99th percentile) at AQMS for Natref Operations with observed ambient levels

Figure 5-91: Simulated annual PM concentrations at AQMS for Natref Operations

	Daily PM (99th percentile)						
Pecentor (a)	Scenario 1 (100% SRU availability)	Scenario 2 (99%	SRU availability)	Scenario 3 (95% SRU availability)			
	Concentration (μg/m³)	Concentration (µg/m³)	Relative change	Concentration (µg/m³)	Relative change		
Zamdela AQMS	1.1	1.2	8.8%	1.2	8.8%		
Leitrim AQMS	1.0	1.1	8.0%	1.1	8.0%		
AJ Jacobs AQMS	1.1	1.2	11.7%	1.2	11.7%		
Eco Park AQMS	0.7	0.9	26.3%	0.9	26.3%		
Sharpeville AQMS	0.3	0.4	33.6%	0.4	33.6%		
Three Rivers AQMS	0.2	0.3	34.7%	0.3	34.7%		
Malakabeng Primary School	1.1	1.2	11.4%	1.2	11.4%		
Cedar Secondary School	1.2	1.3	8.9%	1.3	8.9%		
Bofula- Tshepe Primary School	1.1	1.2	5.2%	1.2	5.2%		
Clinic A Zamdela	1.2	1.3	5.7%	1.3	5.7%		
Zamdela Hospital Zumayear	1.0	1.1	19.4%	1.1	19.4%		
Iketsetseng Secondary School	1.1	1.2	5.2%	1.2	5.2%		
Clinic B Zamdela	1.1	1.3	15.3%	1.3	15.3%		
Tsatsi Primary School	0.9	1.0	17.7%	1.0	17.7%		
Isaac Mhlambi Primary School	1.1	1.2	8.5%	1.2	8.5%		
Nkopoleng Secondary School	0.9	1.0	17.4%	1.0	17.4%		
HTS Secondary School	1.3	1.5	12.0%	1.5	12.0%		
Szamdela Community Clinic	0.9	1.1	13.8%	1.1	13.8%		
AJ Jacobs Primary School	1.1	1.2	6.1%	1.2	6.1%		
Theha Setjhaba Primary School	0.9	1.0	11.6%	1.0	11.6%		
Sasolburg Clinic	1.3	1.4	10.0%	1.4	10.0%		
Credo Primary School	1.0	1.0	7.4%	1.0	7.4%		
Lehutso Primary School	0.8	0.9	15.6%	0.9	15.6%		
Harry Gwala Clinic Creche	0.9	1.0	10.8%	1.0	10.8%		
Kahobotjha-sakubusha Secondary School	1.0	1.2	20.0%	1.2	20.0%		
Sasolburg Provincial Hospital	1.3	1.3	0.2%	1.3	0.2%		
(a) Conservatively assumes all PM is either PM ₁₀ or PM	2.5.						

Table 5-25: Simulated baseline daily PM concentrations and the theoretical change in concentrations relative to the baseline at the AQMs and 20 closest receptors

	Annual PM						
Pecentor (a)	Scenario 1 (100% SRU availability)	Scenario 2 (99% S	SRU availability)	Scenario 3 (95% SRU availability)			
	Concentration (μg/m³)	Concentration (µg/m³)	Relative change	Concentration (µg/m³)	Relative change		
Zamdela AQMS	0.2	0.2	0.1%	0.2	0.6%		
Leitrim AQMS	0.2	0.2	0.1%	0.2	0.5%		
AJ Jacobs AQMS	0.1	0.1	0.1%	0.1	0.7%		
Eco Park AQMS	0.1	0.1	0.2%	0.1	1.0%		
Sharpeville AQMS	0.0	0.0	0.3%	0.0	1.5%		
Three Rivers AQMS	0.0	0.0	0.4%	0.0	1.8%		
Malakabeng Primary School	0.2	0.2	0.1%	0.2	0.5%		
Cedar Secondary School	0.2	0.2	0.1%	0.2	0.5%		
Bofula- Tshepe Primary School	0.2	0.2	0.1%	0.2	0.6%		
Clinic A Zamdela	0.2	0.2	0.1%	0.2	0.5%		
Zamdela Hospital Zumayear	0.1	0.1	0.1%	0.1	0.6%		
Iketsetseng Secondary School	0.2	0.2	0.1%	0.2	0.6%		
Clinic B Zamdela	0.2	0.2	0.1%	0.2	0.5%		
Tsatsi Primary School	0.1	0.1	0.1%	0.1	0.6%		
Isaac Mhlambi Primary School	0.2	0.2	0.1%	0.2	0.5%		
Nkopoleng Secondary School	0.1	0.1	0.1%	0.1	0.6%		
HTS Secondary School	0.2	0.2	0.1%	0.2	0.5%		
Szamdela Community Clinic	0.1	0.1	0.1%	0.1	0.6%		
AJ Jacobs Primary School	0.1	0.1	0.1%	0.1	0.6%		
Theha Setjhaba Primary School	0.1	0.1	0.1%	0.1	0.6%		
Sasolburg Clinic	0.1	0.1	0.1%	0.1	0.6%		
Credo Primary School	0.2	0.2	0.1%	0.2	0.6%		
Lehutso Primary School	0.1	0.1	0.1%	0.1	0.7%		
Harry Gwala Clinic Creche	0.1	0.1	0.1%	0.1	0.6%		
Kahobotjha-sakubusha Secondary School	0.1	0.1	0.2%	0.1	0.8%		
Sasolburg Provincial Hospital	0.1	0.1	0.1%	0.1	0.6%		
Note: (a) Conservatively assumes all PM is either PM ₁₀ or PM	2.5.						

Table 5-26: Simulated baseline annual PM concentrations and the theoretical change in concentrations relative to the baseline at the AQMs and 20 closest receptors

Figure 5-92: Simulated daily PM concentrations (99th percentile) for Scenario 1 (100% SRU availability)

Figure 5-93: Simulated daily PM concentrations (99th percentile) as a result of theoretical compliance with new plant emission standards, Scenario 2 (99% SRU availability)

Figure 5-94: Simulated daily PM concentrations (99th percentile) for Scenario 3 (95% SRU availability)

Figure 5-95: Simulated annual PM concentrations for Scenario 1 (100% SRU availability)

Figure 5-96: Simulated annual PM concentrations as a result of theoretical compliance with new plant emission standards, Scenario 2 (99% SRU availability)

Figure 5-97: Simulated annual PM concentrations for Scenario 3 (95% SRU availability)

5.1.8.1.4 Carbon Monoxide (CO)

Emission rates for CO does not differ for the three scenarios. Only simulated baseline conditions was therefore provided in this section (Figure 5-97 and Figure 5-98). The ambient CO concentrations due to baseline Natref operations is within hourly NAAQS (Figure 5-99).

Figure 5-98: Simulated hourly CO concentrations at AQMS for Natref with observed ambient levels

Figure 5-99: Simulated hourly CO concentrations at AQMS for Natref

Figure 5-100: Simulated hourly CO concentrations (99th percentile) as a result of baseline emissions

5.1.9 Uncertainty of Modelled Results

The main steps of uncertainty management are to:

- identify and understand uncertainties;
- understand whether uncertainties matter for decisions being made at the time;
- if they do matter, decide what to do about them; and,
- recommend a way forward.

Managing uncertainties attempts to eliminate the source of technical disagreements and failure to understand them often leads to a conclusion that all uncertainties need to be eliminated before project decisions can be made. The first decision about how to manage uncertainties relates to their significance given the decision being addressed. In the current context, the different parts of the investigation were grouped into similar uncertainty regimes, namely:

- dispersion model uncertainties;
- input data uncertainties;
- the methodology of validating model results; and,
- the methodology of expressing the modelled scenarios.

A comprehensive discussion on uncertainties is provided in Appendix H.

As discussed in Section 5.1.6, the baseline predictions with the inclusion of estimated background concentrations performed well within the generally accepted (U.S. EPA 2005) "factor of two" accuracy of dispersion models. Unless greater general experience is gained, or some further formal validation studies are conducted, it is not possible to say how much more confidence can be given to well-executed plume and puff models.

As discussed in Appendix I, it is estimated that the ambient monitoring has an uncertainty of 5% with a 95% confidence interval and the emissions monitoring an uncertainty of 10% with a 95% confidence interval. Based on these uncertainties, it is estimated that the concentration ratios of the different emission scenarios have an uncertainty of -36% and +58%, i.e. potential under-prediction of 36% and over-prediction of 58%.

The Intergovernmental Panel on Climate Change (IPCC) produced a qualitative method for consistent communication of uncertainties in the IPCC Fifth Assessment Report. This Guidance Note has been summarised in Appendix I. On application of this guide, the results from this investigation is considered to be of "high confidence" based on a "high agreement" of the baseline predictions with observations, based on "medium evidence".

5.2 Analysis of Emissions' Impact on the Environment

5.2.1 Critical Levels for Vegetation

The impact of Natref emissions on surrounding vegetation was assessed by comparing the simulated annual SO₂ and NO₂ concentrations for each of the emission scenarios against the critical levels for vegetation as defined by the United Nations Economic Commission for Europe (UNECE) Convention on Long Range Trans-boundary Air Pollution Limits (CLRTAP, 2015) (Table 5-27).

Pollutant	Vegetation type	Critical Level (µg/m³)	Time Period ^(a)					
SO ₂	Cyanobacterial lichens	10	Annual average					
	Forest ecosystems (including understorey vegetation)	20	Annual average and Half-year mean (winter)					
	(Semi-)natural vegetation	20	Annual average and Half-year mean (winter)					
	Agricultural crops	30	Annual average and Half-year mean (winter)					
NO ₂	All	30	Annual average and Half-year mean (winter)					
		75	Daily average					
Notes:								
(a) For the pu	urposes of mapping of critical levels and exceedances CLRT	AP recommend u	sing only the annual average, due to increased					
reliability of mapped and simulated data for the longer time period. It is also noted that long-term effects of NOx are considered to be								
more significant than short-term effects (CLRTAP, 2015).								

Table 5-27: Critical levels for SO_2 and NO_2 by vegetation type (CLRTAP, 2015)

The simulated off-site annual concentrations of SO_2 do not exceed the critical levels for all vegetation types for all scenarios (Figure 5-101, Figure 5-102 and Figure 5-103). Similarly, NO_2 concentrations are likely to be below the critical levels for all vegetation types for baseline operations (Figure 5-104).

Figure 5-101: Annual SO $_2$ concentrations for Scenario 1 compared with CLRTAP critical levels

Figure 5-102: Annual SO₂ concentrations as a result of theoretical compliance with new plant emission standards compared, Scenario 2, with CLRTAP critical levels

Figure 5-103: Annual SO₂ concentrations for Scenario 3 compared with CLRTAP critical levels

Figure 5-104: Annual NO₂ concentrations as a result of baseline emissions compared with CLRTAP critical levels

5.2.2 Dustfall

Dustfall deposition rates were estimated as a result of particulate emissions from the Natref point sources. The simulated PM concentrations (Section 5.1.8.1.3) were converted to deposition rates by assuming a settling velocity of 6.43 x 10^{-3} m/s (based on a 10 µm particle with a density of 2.1 g/m³). Estimated dustfall rates for the simulation scenarios ranged between 0.03 and 8.3 mg/m².day (Table 5-28). No exceedances of the NDCR residential standard were simulated off-site. Isopleth plots are presented for dustfall deposition rates for the three scenarios in Figure 5-105 to Figure 5-107. Simulated dustfall rates have been compared to the acceptable dustfall rate applicable to residential areas as defined by the NDCR (Table 5-3).

	Daily dustfall rate (mg/m².day)						
Criteria	Scenario 1 (100% SRU availability)	Scenario 2 (99% SRU availability)	Scenario 3 (95% SRU availability)				
Min	0.03	0.06	0.06				
Max	8.33	8.33	8.33				

Table 5-28: Summary of dustfall deposition rates as a result of operations at Natref

Figure 5-105: Simulated daily dustfall for Scenario 1 (100% SRU availability)

Figure 5-106: Simulated daily dustfall as a result of theoretical compliance with new plant standards, Scenario 2 (99% SRU availability)

Figure 5-107: Simulated daily dustfall for Scenario 3 (95% SRU availability)

5.2.3 Corrosion

5.2.3.1 Factors Affecting Corrosion

The most important corrosion stimulators are water (humidity) and air pollutants, such as SO₂, NH₃, and acids such as HCl and formic acid (HCOOH), as well as aerosols and particles containing chlorides (Cl⁻), nitrates (NO³⁻), and sulfates (SO₄²). The presence of a moisture film on the surface allows these pollutants to dissolve and dissociate into its respective positive and negative ions, and therefore constitutes the electrolyte for corrosion to take place. The thickness of this aqueous layer depends on the relative humidity and surface properties, and is typically a few to a few tens of nanometres (nm) at room temperature (Phipps and Rice 1979).

Dry deposition near emission sources in urban and industrial areas consists largely of the adsorption of criteria pollutants such as SO₂ and NO_x on surfaces, with the deposited amount proportional to the content in air. The deposition rate is high at elevated humidity, especially on some metals; e.g., steel and zinc (Sydberger and Vannerberg, 1972). Corrosion due to SO₂ exposure is perhaps the most significant. Although NO_x may also contribute to corrosion of metals, it is considerably less significant. Like SO₂, this pollutant is mainly emitted from combustion processes such as boilers, power stations, motor vehicle exhausts, etc. It is predominantly emitted as nitrogen oxide (NO) and oxidised in the atmosphere to nitrogen dioxide (NO₂). This oxidation process is a relatively fast process, but further oxidation of NO₂ to nitric acid (HNO₃), i.e. the form conducive for corrosion, occurs at a slow rate and therefore exposure is normally at comparatively low concentrations.

Very little work has been reported on the effect of HCl on the degradation of materials in the environment. This is probably because HCl, which is present outdoors in markedly reduced concentrations when compared with SO₂, has not been considered to contribute to significant degradation of materials. The first major study of atmospheric degradation of metals by

HCl was carried out by Feitnecht (1952) who exposed zinc, iron and copper to HCl vapours at varying humidity's between 50% and 95%. Feitnecht found that HCl reacted with metals only when a critical relative humidity was exceeded, which he linked to the vapour pressure of a saturated solution of the metal chloride formed during corrosion. He regards the mechanism as electrochemical, with the oxide-film as cathodes and small areas of metal exposed at breaks as anodes; the interaction between the hydroxide ions (OH- ions), formed by the cathodic reduction of oxygen, and the metal ions, formed by the anodic reaction, leads to hydroxide or basic chloride. Barton and Bartonova (1969) carried out an extensive investigation of the corrosive effect of HCl gas at concentrations between 7 and 10 ppm on zinc, mild steel, and copper at temperatures between 20°C and 50°C and at relative humidity's of 70% and 95%. Two distinct stages were seen in the behaviour:

- Stage 1 was characterized by a non-linear increase in mass loss with time; termed the "indication period for steadystate corrosion".
- Stage 2, after about 16 days' exposure, showed steady-state corrosion with a linear increase in mass-loss with time.

The primary corrosion products found on iron were FeO(OH), Fe₃O₄ and FeCl₂, whilst those found on zinc were 4Zn (OH)₂. ZnCl₂, Zn (OH)₂ and ZnO. The amount of chloride in the corrosion product tended to decrease slowly with time. After the steady state corrosion stage had been reached, the composition of the corrosion product remained unchanged.

Barton and Bartonova (1969) measured the corrosion rate at different temperatures in the steady state region. For zinc, the corrosion rate decreased as the temperature increased; for iron, the corrosion rate increased with temperatures up to 40°C, but decreased at 50°C. The rate of the reactions did not appear to depend on the diffusion of HCl to the surface since the corrosion rate was similar in flowing and stationery atmospheres. The implication is that the corrosion rate is dependent on chemical reaction rate. The kinetics of corrosion is controlled by the transfer of HCl to the corrosion product atmosphere interface, its adsorption and the subsequent production of soluble ZnCl₂. The corrosion rate also depends on the hydroxide / chloride ratio in the corrosion product as the hydroxides are more protective than the chlorides.

No literature could be obtained on the combined corrosive effects of gaseous SO₂ and HCl pollutant. Furthermore, no doseresponse relationships between hydrochloric acid concentrating or deposition rates and corrosion rates could be obtained. Most literature on chloride exposures discusses the corrosion rates associated with marine environments. Whilst the chemical reactions may be similar, it is not clear whether an assumption of equivalence may be made between hydrochloric acid and sodium chloride. Whilst both are donors of chloride ions, the former would also reduce the pH of the moisture layer on the metal surface. Given these limitations, and in an attempt to provide an indication of the corrosion potential that the proposed facility may have on the surrounding environment, it was decided to make reference to the International Standard Organisation (ISO) corrosion classification which considers SO₂ and chloride deposition rates to establish the rate of corrosion of a number of different metal types.

5.2.3.2 International Standard Organisation

The ISO provides a classification scheme that can directly be used for technical and economic analyses of corrosion damage due to atmospheric SO₂ and chlorides, and for the rational choice of protection measures. As such, the corrosivity of the atmosphere is divided into five categories (C1 to C5), ranging from very low to very high corrosivity. These corrosivity categories are estimated using a combination of the meteorological parameters, sulfate deposition and airborne salinity (chloride ion). These are discussed below.

5.2.3.2.1 Time of Wetness

Relative humidity, rain, dew, and temperature are determinants of the so-called *time of wetness* (TOW), defined (ISO 9223) as the fraction of time with relative humidity in excess of 80%, at temperatures above freezing (>0°C). The TOW of a corroding surface is a key parameter, directly determining the duration of the electrochemical corrosion processes. This is a complex variable, since all the means of formation and evaporation of the surface electrolyte solution must be considered. The TOW refers to the period of time during which the atmospheric conditions are favourable for the formation of a surface layer of moisture on a metal or alloy. As pointed in the previous section, this moisture film is extremely important from the point of view of the chemical mechanisms of the corrosion processs.

Meteorological data from the Eco Park and Leitrim AQMS were used to calculate the TOW. The average TOW at is 16% and 18% per year at Eco Park and Leitrim respectively. According to the ISO 9233 classification (Table 5-29), the TOW class represented by these weather conditions is **T3**.

Category	Time of Wetness	Example of Occurrence	Comment		
	Hours per Year	Percentage			
T1	T≤10	T≤0.1	Indoor		
T2	10 <t≤250< td=""><td>0.1<t≤3< td=""><td>Indoor without climate control</td></t≤3<></td></t≤250<>	0.1 <t≤3< td=""><td>Indoor without climate control</td></t≤3<>	Indoor without climate control		
Т3	250 <t≤2500< th=""><th>3<t≤30< th=""><th>Outdoor atmospheres in dry, cold climates and part of temperate climates</th></t≤30<></th></t≤2500<>	3 <t≤30< th=""><th>Outdoor atmospheres in dry, cold climates and part of temperate climates</th></t≤30<>	Outdoor atmospheres in dry, cold climates and part of temperate climates		
T4	2 500 <t≤5 500<="" td=""><td>30<t≤60< td=""><td>Outdoor atmospheres in all climates except for dry and cold climates</td></t≤60<></td></t≤5>	30 <t≤60< td=""><td>Outdoor atmospheres in all climates except for dry and cold climates</td></t≤60<>	Outdoor atmospheres in all climates except for dry and cold climates		
T5	5 500 <t< td=""><td>60<t< td=""><td>Tropical outdoor or surf</td></t<></td></t<>	60 <t< td=""><td>Tropical outdoor or surf</td></t<>	Tropical outdoor or surf		

Table 5-29: ISO 9223 Classification of the Time of Wetness

5.2.3.2.2 Atmospheric pollutants

As indicated by the ISO standard, corrosion due to atmospheric pollution is dominated by sulfur dioxide (urban environments) and chlorides (marine environments). This is also evident from open literature where the focus of atmospheric corrosion of metals has predominantly been described through the impact of these two pollutants.

Sulfur Dioxide

Sulfate ions are formed in the surface moisture layer by the oxidation of sulfur dioxide and their formation is considered to be the main corrosion accelerating effect from sulfur dioxide. Sulfur dioxide may be expressed either in terms of a deposition rate or an airborne concentration. The method of determining the deposition rate in this instance followed the ISO 9223 Method, where the corrosion potential due to SO₂ is classified according to the long-term (annual) deposition rate or air concentration of SO₂, as summarised in Table 5-29. Any concentration of SO₂ within category P₀ is considered to be the background concentration and is insignificant from the point of view of corrosive attack. Pollution by SO₂ within category P3 is considered extreme and is typical of operational microclimates beyond the scope of the International Standard. The ground-level SO₂ concentrations, as a result of emissions from Natref, fall into the P2 category for all three scenarios (Table 5-31).

Category	Concentration of SO ₂	Deposition Rate of SO ₂
	µg/m³	mg/(m².day)
P0	P _c ≤ 12	P _d ≤ 10
P1	$12 < P_c \le 40$	10 < P _d ≤ 35
P2	$40 < P_{c} \le 90$	35 < P _d ≤ 80
P3	90 < P _c ≤ 250	$80 < P_d \le 200$

Table 5-31: ISO 9223 classification of pollution by sulfur-containing substances represented by SO₂ as a result of Natref

	Scenario					
Criterion	Scenario 1 (100% SRU availability)	Scenario 2 (99% SRU availability)	Scenario 3 (95% SRU availability)			
Maximum annual SO ₂ concentration (µg/m ³)	32.92	32.95	33.04			
ISO corrosivity category for SO ₂	P1	P1	P1			

Airborne Chloride

The ISO 9223 classification of pollution by chloride containing substances is provided in Table 5-32. Chloride deposition rates were estimated based HCl emissions from as a result of processes at the Sasol Sasolburg facility (Table 5-33). Although maritime chloride contributions are likely to be insignificant, other industrial sources in the vicinity may also contribute to the HCl deposition load however the contribution is unknown.

Table 5-32: ISO 9223 classification of pollution by airborne chloride containing substances

Category	Deposition Rate of Chloride (mg/m².day)
SO	S ≤ 3
S1	3 < S ≤ 60
S2	60 < S ≤ 300
S3	300 < S ≤ 1500

Table 5-33: ISO 9223 classification of pollution by airborne chloride containing substances for SO

	Scenario					
Criterion	Scenario 1 (100% SRU availability)	Scenario 2 (99% SRU availability)	Scenario 3 (95% SRU availability)			
Chloride deposition (mg/m ² .day)	0.05					
ISO corrosivity category for Cl	SO					

5.2.3.2.3 Corrosivity Potential

Having calculated the TOW, the classification of pollution by sulfate and chloride containing substances, the corrosivity category (C1 to C5) for individual metals can be estimated according to ISO 9223, as shown in Table 5-34, and specific corrosivity categories associated with Natref are summarised for the three scenarios in Table 5-35. Once the corrosivity category has been determined, the corrosion rate for carbon and weathered steel, zinc, copper and aluminium can be estimated using the rates given in Table 5-36.

Unalloyed carbon steel															
		T1			T2			Т3			T4			T5	
	S0-S1	S ₂	S ₃	S ₀ -S ₁	S ₂	S ₃									
P0-P1	1	1	1/2	1	2	3/4	2/3	3/4	4	3	4	5	3/4	5	5
P ₂	1	1	1/2	1/2	2/3	3/4	3/4	3/4	4/5	4	4	5	4/5	5	5
P ₃	1/2	1/2	2	2	3	4	4	4/	5	5	5	5	5	5	5
Zinc and copper															
		T1			T2			Т3			T4			T5	
	S ₀ -S ₁	S ₂	S ₃	S ₀ -S ₁	S ₂	S ₃	S ₀ -S ₁	S ₂	S ₃	S ₀ -S ₁	S ₂	S ₃	S ₀ -S ₁	S ₂	S ₃
P ₀ -P ₁	1	1	1	1	1/2	3	3	3	3/4	3	4	5	3/4	5	5
P ₂	1	1	1/2	1/2	2	3	3	3/4	4	3/4	4	5	4/5	5	5
P ₃	1	1/2	2	2	3	3/4	3	3/4	4	4/5	5	5	5	5	5
							Alumir	nium							
		T1			T2			Т3			T4			T5	
	S0-S1	S ₂	S ₃	S ₀ -S ₁	S ₂	S ₃									
P ₀ -P ₁	1	2	2	1	2/3	4	3	3/4	4	3	3/4	5	4	5	5
P ₂	1	2	2/3	1/2	3/4	4	3	4	4/5	3/4	4	5	4/5	5	5
P ₃	1	2/3	3	3/4	4	4	3/4	4/5	5	4/5	5	5	5	5	5

Table 5-34: Estimated corrosivity categories of the atmosphere

Note: Corrosivity is expressed as the numerical part of the corrosivity category code (for example: 1 instead of C1).

Table 5-35: Estimated corrosivity categories of the atmosphere associated with Natref

	Scenario						
Metal type	Scenario 1 (100% SRU availability)	Scenario 2 (99% SRU availability)	Scenario 3 (95% SRU availability)				
Unalloyed carbon steel	C2/3						
Zinc and copper	C3						
Aluminium	C3						

Table 5-36: Average and steady state corrosion rates for Different Metals and Corrosivity Categories

	Average corrosion rate (r_{av}) during the first 10 years for the following corrosivity categories									
Metal	(μm/annum)									
	C1	C1 C2		C4	C5					
Carbon steel	r _{av} ≤ 0.5	$0.5 < r_{av} \le 5$	5 < r _{av} ≤ 12	$12 < r_{av} \le 30$	$30 < r_{av} \le 100$					
Weathering steel	r _{av} ≤ 0.1	0.1 < r _{av} ≤ 2	2 < r _{av} ≤ 8	8 < r _{av} ≤ 15	15 < r _{av} ≤ 80					
Zinc	r _{av} ≤ 0.1	$0.1 < r_{av} \le 0.5$	0.5 < r _{av} ≤ 2	$2 < r_{av} \le 4$	$4 < r_{av} \le 10$					
Copper	r _{av} ≤ 0.01	$0.01 < r_{av} \le 0.1$	$0.1 < r_{av} \le 1.5$	1.5 < r _{av} ≤ 3	$3 < r_{av} \le 5$					
Aluminium	r _{av} ≈ 0.01	r _{av} ≤ 0.025	$0.01 < r_{av} \le 0.1$	(5)	(5)					
Metal	Steady state corrosion rate (riin) for the following corrosivity categories (µm/annum)									
Metal	C1	C2	C3	C4	C5					
Carbon steel	r _{av} ≤ 0.1	0.1 < r _{av} ≤ 1.5	1.5 < r _{av} ≤ 8	$8 < r_{av} \le 20$	$20 < r_{av} \le 90$					
Weathering steel	r _{av} ≤ 0.1	0.1 < r _{av} ≤ 1	1 < r _{av} ≤ 5	5 < r _{av} ≤ 10	$10 < r_{av} \le 80$					
Zinc	r _{av} ≤ 0.05	$0.1 < r_{av} \le 0.5$	0.5 < r _{av} ≤ 2	$2 < r_{av} \le 4$	$4 < r_{av} \le 10$					
Copper	r _{av} ≤ 0.01	$0.01 < r_{av} \le 0.1$	0.1 < r _{av} ≤ 1	1 < r _{av} ≤ 3	$3 < r_{av} \le 5$					
Aluminium negligible $0.01 < r_{av} \le 0.02$ $0.02 < r_{av} \le 0.2$ (5) (5)										
Notes					•					
1) The corrosion rate of carbon steel is not constant during the first 10 years.										
		Average corre	osion rate (r _{av}) during	the first 10 years for t	he following corrosiv	ity categories				
----	---	-----------------------------	--------------------------------------	-------------------------------	------------------------------	-----------------------------	--			
	Metal	(μm/annum)								
		C1	C2	C3	C4	C5				
2)	The corrosion rate	of weathering steel is stro	ongly dependent on the c	combination of various influ	uencing factors (alternation	on between wet and dry				
	periods). In atmosp	heres with sulfur dioxide (SO2) pollution, a more pro	otective rust layer is forme	d. Rain protected surfaces	s in marine atmospheres				
	heavily polluted wit	h chlorides may have muc	h higher corrosion rates th	nan freely exposed surface	S.					
3)	Applies also to the	copper-zinc, copper-tin an	d similar alloys with a cop	per content of at least 60 9	%.					
4)	The rates shown ar	e based on commercially p	oure aluminium (purity> 99	9.5%) which, like most alun	ninium alloys, corrodes in	the atmosphere at a rate				
	that decreases with	time. However, these rate	es are based on average	mass loss results while the	e corrosion attack is usua	lly manifested as pitting.				
	Consequently, the	rates shown do not repres	ent rates of penetration. F	Penetration rates for pitting	also decrease with expo	sure time. Commercially				
	pure aluminium, alu	uminium alloys containing	magnesium, manganese	and/or silicon as the major	r alloying elements, and A	Iclad products generally				
	have better corrosi	on resistance than alumini	um alloys containing signi	ificant quantities of copper	, zinc and/or iron. Alloys v	vith significant quantities				
	of magnesium, zinc, copper and/or iron may also be subject to other forms of localized corrosion such as stress corrosion cracking, exfoliation and									
	intergranular attack	ζ.								
5)	In atmospheres de	fined by corrosivity catego	ories C4 and C5, a mark	ed increase in corrosion r	ate may be expected and	d local corrosion effects				

5) In atmospheres defined by corrosivity categories C4 and C5, a marked increase in corrosion rate may be expected and local corrosion effective become important. For these two corrosivity categories, the data concerning general corrosion may be misleading.

5.2.3.3 ISOCORRAG Atmospheric Corrosion Model

The ISOCORRAG equation was developed to predict the annual corrosion rate resulting from atmospheric corrosion for several metals. The equation was created by the multiple linear regressions of corrosion data from several sites around the globe. With ISOCORRAG, the annual corrosion rate is expressed as (Knotkova *et al.*, 1995):

$$K = a + b_1[SO_2] + b_2[Cl^-] + b_3[TOW]$$

Equation 2

Where the constants *a*, b_1 , b_2 , and b_3 , differ according to the type of metal, shape of the specimen, and exposure conditions. Table 5-37 is a summary of constants for flat metal specimens. The deposition of SO₂ is expressed as an equivalent concentration, i.e. μ g/m³; the deposition of chloride pollutants [Cl-] is expressed in in mg/m².day, and time of wetness [TOW] in hours per year.

Matal		Regression Constants for ISOCORRAG model			
INICIAI	а	b1	b ₂	b3	
Steel	1.3269	0.4313	0.1384	0.0057	
Zinc	0.2098	0.0232	0.0059	0.00027	
Copper	0.9556	0.0065	0.00393	0.0000538	
Aluminium	0.0069	0.00638	0.000558	0.0000650	

Table 5-37: ISOCORRAG regression model constants (Knotkova et al., 1995)

Using simulated concentrations of SO₂ as a result of Natref operations and wet deposition rates of chloride (HCI emissions and simulated concentrations) (as in Section 5.2.3.2.2. above) the rate of corrosion (K) was calculated (using Equation 2) across the dispersion modelling domain. TOW from Section 5.2.3.2.1 was used. A summary of the findings is presented in Table 5-38. There is some agreement between the two methods for corrosion rate estimation for aluminium, however corrosion rates calculated using the ISOCORRAG method are in higher than corrosion rates presented for the ISO method for steel, zinc and copper (Table 5-36 compared with Table 5-38).

Scenario	Criteria	Corrosion rate (K) [µm/annum]			
		Steel	Zinc	Copper	Aluminium
Time of wet	ness at Eco Park A	QMS [1377 hou	urs]		
Secondria 1 (100% SPLL availability)	Min	9.19	32.16	1.03	0.10
Time of we Scenario 1 (100% SRU availability) Scenario 2 (99% SRU availability) Scenario 3 (95% SRU availability) Time of v	Max	23.38	32.92	1.24	0.31
Scopario 2 (00% SPLL availability)	Min	9.19	32.16	1.03	0.10
	Max	23.39	32.93	1.24	0.31
Scopario 3 (05% SPLL availability)	Min	9.19	32.16	1.03	0.10
	Max	23.43	32.93	1.24	0.31
Time of we	tness at Leitrim AC	QMS [1559 hou	rs]		
Scopario 1 (100% SPLL availability)	Min	10.23	36.39	1.04	0.11
	Max	24.42	37.15	1.25	0.32
Scopario 2 (00% SPLL availability)	Min	10.23	36.39	1.04	0.11
	Max	24.43	37.15	1.25	0.32
Scopario 3 (05% SPLL availability)	Min	10.23	36.39	1.04	0.11
	Max	24.47	37.16	1.25	0.32

Table 5-38: Corrosion rate of metals associated with Natref calculated according to the ISOCORRAG metho

5.2.4 Sulfur and Nitrogen Deposition Impacts

Understanding the impact of deposition of atmospheric sulfur (S) and nitrogen (N) on South African ecosystems has been ongoing since the late 1980's (Tyson *et al.* 1988), with much of the earlier work focussing on the circulation over the sub-continent (Tyson *et al.* 1996). More recent research has focussed on quantifying S and N deposition (Galpin and Turner 1999, Zunckel *et al.* 1996, Scorgie and Kornelius 2009, Josipovic *et al.* 2010) and the subsequent impacts on ecosystems (Fey and Guy 1993, Van Tienhoven *et al.* 1995, Reid 2007, Bird 2011, Josipovic *et al.* 2011).

These studies estimating deposition of S and or N compounds to ecosystems present ranges of deposition rates where the differences are related to the distance from major industrial sources; the method of estimation (field work and/or calculation based on deposition velocities or dispersion modelling). As an indication, total S deposition over the industrialised Highveld of South Africa was modelled to range between 8 and 35 kg/ha/year with background levels of approximately 1 kg/ha/year (Scorgie and Kornelius 2009). In contrast, using ambient SO₂ concentrations and an inferential deposition model to calculate S deposition, Zunckel *et al.*(1996) estimated total S deposition of 13.9 kg/ha/year as maximum deposition rate on the Highveld. Estimates of nitrogen deposition range between 6.7 kg/ha/year (Collett *et al.* 2010) and 15 kg/ha/year (Scorgie and Kornelius 2009). Considering total acidic input from atmospheric sources, Josipovic and colleagues (2011) calculated a range of deposition rates between 15.8 and 23.2 kg/ha/year. All estimates are within the range of deposition rates for S and N as for some of the industrialised regions of Europe and North America (compared in Scorgie and Kornelius 2009, and Bird 2011) raising concern that the acidic loading of sulfur and nitrogen on the ecosystems of the Highveld – South Africa's most heavily industrialised region – could have implications for ecosystem functioning.

Establishing clear cause-effect relationships in complex ecosystem studies can be difficult, especially where the extent of visible damage is large and local emissions are low (Matzner and Murach 1995). Reasons include: time lags between stressor (high concentration of atmospheric pollutants) and visible symptomatic response of biota; interaction of natural factors (e.g. climate, soil and pests) and human activities (such as management, site history and air pollution); local ecosystem uniqueness and difficulty of extrapolating to larger scales; or, symptomatic responses that are not unique to the cause (e.g. defoliation) (Matzner and Murach 1995). The synergistic effect of pollutant cocktails can also add complexity to identifying causative pollutants (Emberson 2003).

Mobilisation of active forms of S and N into the atmosphere, and later as deposition onto ecosystems, can result in acidification of soils and freshwater systems, soil nutrient depletion, fertilization of naturally (usually nitrogen) limited systems and increased availability of metal ions (e.g. Al) disrupting ecosystem functioning (Rodhe *et al.* 1995) and changing plant and/or freshwater species diversity (Stevens *et al.* 2004). Many of these impacts occur over a decade or longer where attributing source contributions can be complex within a regional setting. Sasol have, however, supported the long-term deposition quantification studies in South African under the DEBITS (Deposition of Biogeochemically Important Trace Species) programme, as part of the International Global Atmospheric Chemistry Project. Three DEBITS sites are maintained within South Africa, one located near Amersfoort, on the Mpumalanga Highveld, downwind from major industrial sources, including Natref. Investigating deposition and its impacts on the Highveld grasslands as a result of Natref operations was beyond the time-frame of the accompanying postponement application especially since long-term impact studies are not yet available for South Africa.

6 COMPLAINTS

Year	Nature of complaints	Actions taken to investigate complaints	Causes of complaints identified	Measures taken to avoid reoccurrences in instances where the plant's operations were found to be the cause
October 2016 – September 2018	 A total of 5 complaints were received for the period of October 2016 – September 2018 that were relevant to Natref. The complaints were received on the following dates: 31 August 2017; 18 September 2017; 24 November 2017; 20 January 2018; and 28 August 2018. All 5 complaints were related to odours. 	Natref operates a complaints line where any environmental complaint can be registered. The Shift Superintendent and the environmental standby will investigate the complaint and ensure that the necessary steps are taken to reduce and manage the impact and to reduce the duration of the incident.	Process upsets, equipment failure	Measures are implemented to prevent a similar incident from recurring.

7 CURRENT OR PLANNED AIR QUALITY MANAGEMENT INTERVENTIONS

An overview of approved air quality management improvement interventions, currently implemented and scheduled over the next 5 to 10 years, is detailed in the accompanying Motivation Report.

8 COMPLIANCE AND ENFORCEMENT ACTIONS

No compliance notices were received since 2015.

9 ADDITIONAL INFORMATION

Beyond the requirements stipulated in the AIR Regulations and Dispersion Modelling Regulations, the following additional information is considered useful for better understanding the impacts of Natref's activities and the implications of the requested postponements on ambient air quality. A brief description of each of these analyses is provided below, and referenced to where in the applications the information may be found.

a) Polar plots

Polar plots have been provided in Section 5.1.6.1 to visually demonstrate directional contribution as well as the dependence of concentrations on wind speed, in much the same way as a pollution rose does. The polar plots identify major contributing emissions sources impacting on a monitoring station and the direction of the impact. These polar plots do not replace isopleth plots, but rather provide additional information on the measured air quality in the region of the facility.

b) Delta approach to assessing implications of postponements for ambient air quality

In assessing the impacts of Natref's postponement applications on ambient air quality, a fit-for-purpose approach, as requested for by the Dispersion modelling Regulations, was taken to assess the results from the dispersion modelling, which we have referred to as the "delta approach". The delta approach is premised on recognising that the difference between the current or "before additional compliance is implemented" emission scenario (i.e. the baseline scenario) and "after additional compliance is implemented" scenario (i.e. the 2020 MES compliance scenario) relates to the change in emissions from the point sources in question.

Therefore, the delta approach focuses on demonstrating the change in predicted ambient impacts of the various compliance scenarios, to guide decision makers toward better understanding the implications of the approval of postponements on air quality, and how compliance with the existing and new plant standards would impact on prevailing ambient air quality.

A detailed explanation of the scenarios modelled to highlight the delta changes in ambient air quality arising from retrofit of abatement technology is provided in Section 5.1.1.2. In summary, the three scenarios modelled include:

- Scenario 1 100% SRU availability;
- Scenario 2 99% SRU availability (theoretically complying with New Plant Standards);
- Scenario 3 95% SRU availability.

c) Estimating background ambient air pollutant concentrations

A background air concentration is normally defined as that concentration which would result from air emission sources outside the chosen modelling domain. This concentration can, for instance, be estimated by analysing observed air concentrations for those wind directions when it is blowing towards the sources included in the modelling domain. In other words, the observation point would be upwind from the sources being simulated by the dispersion modelling.

However, as used in the current investigation, background concentrations could also incorporate the contributions from air emission sources present in the modelling domain, but which were not included in the dispersion simulations. For example, air emissions from vehicle tailpipes can significantly contribute to the local ambient NO₂ concentrations. Although most of the sources of air emissions within the Sasol operations were included in the simulations, there remains some that were excluded, for instance fugitive emissions, but would add to the background concentration level.

Since these sources are not neatly located for easy analysis of upwind contributions, the procedure normally adopted to estimate background air concentrations could not be followed. Instead, the "background' concentration was established by comparing the predicted air concentrations with the observed air concentrations. The background concentration as used in this application therefore corresponds to the observed concentration value at a monitoring site when the simulated value at this site reached a near zero value. In other words, the observed residual air concentration was assumed to arise from other sources in the modelling domain.

With this method, the assumption is made that the model performs realistically and that the residual concentration determined this way is a good reflection of the emissions not included in the simulations. In an attempt to illustrate the model accuracy, the fractional bias was calculated for each monitoring station as described in Section 5.1.6.2 of the AIRs. This methodology has been prescribed by the US EPA (U.S. EPA 1992) as an acceptable manner to illustrate the validity of atmospheric dispersion model. Given the good model performance, as measure by the fractional bias, it is assumed that the background concentration obtained using this methodology is reasonable estimates.

d) Ambient impacts of secondary particulates arising from Natref emissions

As detailed in Section 5.1.4.4, one of the reasons for selection of the CALPUFF modelling suite is the fact this this enabled inclusion of the impact of the chemical conversion of sulfur dioxide and nitrogen oxides to secondary particulates within the dispersion model results. Thus, the predicted PM₁₀ concentrations reflected in Section 5.1.8.1.3 include direct emissions of PM plus secondary particulates formed from Natref's emissions.

10 ANNEXURE A

DECLARATION OF ACCURACY OF INFORMATION – APPLICANT

Name of Enterprise: MATREF

Declaration of accuracy of information provided:

Atmospheric Impact Report in terms of section 30 of the Act.

I, <u>ACHENE</u> <u>Wassenack</u> [duly authorised], declare that the information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1)(g) of the National Environmental Management: Air Quality Act (Act No. 39 of 2004).

Signed at <u>Sasolburg</u> on this <u>31</u> day of <u>December</u> 2018

Jassenaar

SIGNATURE

VP: SHERQ Natef

CAPACITY OF SIGNATORY

11 ANNEXURE B

DECLARATION OF INDEPENDENCE - PRACTITIONER

Name of Practitioner:_Reneé von Gruenewaldt

Name of Registration Body: South African Council for Natural Scientific Professions

Professional Registration No.: 400304/07

Declaration of independence and accuracy of information provided:

Atmospheric Impact Report in terms of section 30 of the Act.

I, Reneé von Gruenewaldt, declare that I am independent of the applicant. I have the necessary expertise to conduct the assessments required for the report and will perform the work relating the application in an objective manner, even if this results in views and findings that are not favourable to the applicant. I will disclose to the applicant and the air quality officer all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the air quality officer. The <u>additional</u> information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1)(g) of this Act.

Signed at Midrand on this 6th day of March 2019

Grenenstell

SIGNATURE

Principal Air Quality Scientist

CAPACITY OF SIGNATORY

12 REFERENCES

Bird, T. L. 2011. Some impacts of sulfur and nitrogen deposition on the soils and surface waters of the Highveld grasslands, *South Africa.* dissertation, School of Animal, Plant and Environmental Sciences, Faculty of Science, University of the Witwatersrand, Johannesburg.

Busini, V.C., Capelli, L., Sironi, S., Nano, G., Rossi, A.N., and Bonati, S. 2012 Comparison of CALPUFF and AERMOD Models for Odour Dispersion Simulation. *Chemical Engineering Transactions* 30. DOI: 10.3303/CET1230035.

Carslaw, D.C. and Ropkins, K. 2012. openair — an R package for air quality data analysis. *Environmental Modelling and Software*. Volume 27-28, p52-61.

Carslaw, D.C. 2013. The openair manual — open-source tools for analysing air pollution data. Manual for version 0.8-0, King's College London.

CERC. 2004. ADMS Urban Training. Version 2. Unit A.

CLRTAP, 2015. Mapping Critical Levels for Vegetation, Chapter III of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution; accessed on 2016/12/12 at www.icpmapping.org. (http://www.rivm.nl/media/documenten/cce/manual/binnenop17Juni/Ch3-MapMan-2016-05-03_vf.pdf)

Collett, K. S., Piketh, S.J. and Ross, K.E. 2010. An assessment of the atmospheric nitrogen budget on the South African Highveld. *South African Journal of Science* 106 (5/6): 9 pages.

Emberson, L. 2003. "Air pollution impacts on crops and forests: An introduction." In *Air pollution impacts on crops and forests*, edited by Lisa Emberson, M. R. Ashmore and F. Murray, 3. London: Imperial College Press.

Fey, M. V., and Guy, S.A. 1993. The capacity of soils in the Vaal Dam Catchment to retain sulphate from atmospheric pollution. In *Water Research Commission Report*. Pretoria: Water Research Commission.

Galpin, J. S., and Turner, C.R. 1999. "Trends in composition of rain quality data from the South African interior." *South African Journal of Science* no. 95 (5):225-228.

Gulia, S., Kumar, A., and Khare, M. 2015. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. *Journal of Scientific and Industrial Research* 74 pp. 302 -307.

Josipovic, Miroslav, Harold J. Annegarn, Melanie A. Kneen, Jacobus J. Pienaar, and Stuart J. Piketh. 2011. Atmospheric dry and wet deposition of sulfur and nitrogen species and assessment of critical loads of acidic deposition exceedance in South Africa. *South African Journal of Science* 107 (3/4): 10, http://www.sajs.co.za/index.php/SAJS/article/view/478/602.

Josipovic, Miroslav, Harold Annegarn, Melanie Kneen, Jacobus Pienaar, and Stuart Piketh. 2010. "Concentrations, distributions and critical level exceedance assessment of SO₂, NO₂ and O₃ in South Africa." *Environmental monitoring and assessment* no. 171 (1):181196. doi: 10.1007/s10661-009-1270-5.

Lakes Environmental. 2017. AERMOD Tech Guide. <u>https://www.weblakes.com/guides/aermod/section6/6_5_2.html</u>. Access date: 2017/01/06.

MCERTS. 2011. Manual stack emission monitoring Performance standard for organisations Environment Agency, Version 7.2

Matzner, E., and D. Murach. 1995. "Soil changes induced by air pollutant deposition and their implication for forests in central Europe." *Water, Air, & Soil Pollution* no. 85 (1):63-76.

Norma, R., Cairncross, E., Witi, J., Bradshaw, D., and the South African Comparative Risk Assessment Collaborating Group. 2007. Estimating the burden of disease attributable to urban outdoor air pollution in South Africa in 2000. *South African Medical Journal* 97(7): 782 -789.

Reid, J. L. 2007. *Investigating the long-term effects of air pollution on soil properties in the vicinity of the Arnot power station*. Master of Science, School of Animal Plant and Environmental Sciences University of the Witwatersrand, Johannesburg.

Rodhe, H., P. Grennfelt, J. Wisniewski, C. Agren, G. Bengtsson, K. Johansson, P. Kauppi, Kucera V, L. Rasmussen, B. Rasseland, L. Scholte, and G. Sellden. 1995. "Acid Reign '95? - Conference Summary Statement." *Water, Air and Soil Pollution* no. 85 (1):1-14.

Scire, J.S., D.G. Strimaitis, and R.J. Yamartino. 2000a. A User's Guide for the CALPUFF Dispersion Model (Version 5), Earth Tech, Inc. Report, Concord, MA, January 2000.

Scire, J.S., F.R. Robe, M.E. Fernau, and R.J. Yamartino. 2000b. A User's Guide for the CALMET Dispersion Model (Version 5), Earth Tech, Inc. Report, Concord, MA, January 2000.

Scire, J. and Borissova M (2011). An Empirical Method for Modeling Short-Term and Annual NO₂ Concentrations in Regulatory Models, TRC Energy & Environment Conference (EUEC), Phoenix, Arizona.

Scorgie, Y., and G. Kornelius. 2009. Investigation into the effects of atmospheric pollutants on the soil-water-ecosystem continuum. Phase 0 - concept design. Atmospheric work - literature review and modelling of acid deposition over the Highveld. Airshed Planning Professionals.

Seinfeld, J.H. and S. N. Pandis, 1998: Atmospheric Chemistry and Physics. John Wiley & Sons, New York.

Stevens, Carly J., Nancy B. Dise, J. Owen Mountford, and David J. Gowing. 2004. "Impact of nitrogen deposition on the species richness of grasslands." *Science* no. 303 (5665):1876-1879. doi: 10.1126/science.1094678.

Tiwary, A., and Colls, J. 2010. Air pollution: measurement, monitoring and mitigation (3rd Edition ed.). Oxon: Routledge.

Tyson, P. D., M. Garstang, and R. Swap. 1996. "Large-scale recirculation of air over Southern Africa." *Journal of Applied Meteorology* no. 35:2218-2236.

Tyson, P. D., F. J. Kruger, and C. W. Louw. 1988. Atmospheric pollution and its implications in the Eastern Transvaal Highveld. In *South African National Scientific Programmes*. Pretoria, South Africa: CSIR, South African National Scientific Programmes.

U.S. EPA. 1992. *Protocol for Determining the Best Performing Model*. U.S. Environmental Protection Agency. Research Triangle Park, 2 NC. EPA-454/R-92-025.

Report No.: 17SAS06B

US EPA. 1998. Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long-Range Transport Impacts, U.S. Environmental Protection Agency EPA-454/R-98-019, Research Triangle Park, NC.

US EPA. 2017. Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions. North Carolina, U.S. Environmental Protection Agency, 2005. Federal Register / Vol. 70, No. 216 / Rules and Regulations. Appendix W of 40 CRF Part 51.

Van Tienhoven, A. M., K. A. Olbrich, R. Skoroszewski, J. Taljaard, and M. Zunckel. 1995. "Application of the critical loads approach in South Africa." *Water, Air and Soil Pollution* no. 85:2577-2582.

Witi, J. 2005. Report on ambient PM₁₀ and PM_{2.5} estimates from for monitoring station data. A report to the Medical Research Council's Burden of Disease Research Unit. September 2005. Accessed from: <u>http://www.mrc.co.za/bod/pmexposure.pdf</u>; access date: 2017/01/16

Zunckel, M., C. R. Turner, and R.B. Wells. 1996. "Dry deposition of sulfur on the Mpumalanga highveld: a pilot study using the inferential method." *South African Journal of Science* no. 92 (October):485-491.

APPENDIX A: COMPETENCIES FOR PERFORMING AIR DISPERSION MODELLING

All modelling tasks were performed by competent personnel. Table A-1 is a summary of competency requirements. Apart from the necessary technical skills required for the calculations, personnel competency also include the correct attitude, behaviour, motive and other personal characteristic that are essential to perform the assigned job on time and with the required diligence as deemed necessary for the successful completion of the project.

The project team included a two principal engineers, with relevant experience of 34 years and 15 years and two principal scientists with 16 years and 6 years relevant experience. One of the principal scientists managed and directed the project.

One of the principal engineers conducted verification of modelling results. This function requires a thorough knowledge of the

- meteorological parameters that influence the atmospheric dispersion processes and
- atmospheric chemical transformations that some pollutants may undergo during the dispersion process.

Table A-1: Competencies for Performing Air Dispersion Modelling

Competency	Task, Knowledge and Experience
	Communication with field workers, technicians, laboratories, engineers and scientists and project managers during the process is important to the success of the model
Context	Familiar with terminology, principles and interactions
	Record keeping is important to support the accountability of the model - Understanding of data collection methods and technologies
Knowledge	Meteorology: • Obtain, review and interpret meteorological data • Understanding of meteorological impacts on pollutants • Ability to identify and describe soil, water, drainage and terrain conditions • Understanding of their interaction • Familiarity with surface roughness' • Ability to identify good and bad data points/sets • Understanding of how to deal with incomplete/missing meteorological data Atmospheric Dispersion models • Select appropriate dispersion model • Understanding of model input parameters • Interpret results of model Chemical and physical interactions of atmospheric pollutants • Familiarity with fate and transport of pollutants in air • Interaction of primary pollutants with other substances (natural or industrial) to form secondary pollutants Information relevant to the model • Identify potential pollution (emission) sources and rates • Calculate emission rates based on collected information • Identify land use (urban/rural) • Identify the receptor grid/site Legislation, regulations and guidelines in regards to National Environment Management: Air Quality Act (Act No 39 of 2004), including • Minimum Emissions Standards (Section 21 of Act) • National Ambient Air Quality Standards • Regulations Re
Abilities	Ability to read and understand map information
	Ability to prepare reports and documents as necessary
	Ability to review reports to ensure accuracy, clarity and completeness

Competency	Task, Knowledge and Experience		
	Communication skills		
	Team skills		

APPENDIX B: COMPARISON OF STUDY APPROACH WITH THE REGULATIONS PRESCRIBING THE FORMAT OF THE ATMOSPHERIC IMPACT REPORT AND THE REGULATIONS REGARDING AIR DISPERSION MODELLING (GAZETTE NO 37804 PUBLISHED 11 JULY 2014)

The Regulations prescribing the format of the Atmospheric Impact Report (AIR) (Government Gazette No 36094; published 11 October 2013) were referenced for the air dispersion modelling approach used in this study. Table B-1 compares the AIR Regulations with the approach used in Section 5.

The promulgated Regulations regarding Air Dispersion Modelling (Gazette No. 37804, vol. 589; 11 July 2014) were consulted to ensure that the dispersion modelling process used in this assessment was in agreement with the regulations. Table B-2 compares the Air Dispersion Modelling Regulations with the approach used in Section 5. The only updates applied, following stakeholder comment, was to the receptors to include schools and clinics, as indicated on the isopleth plots in Section 5.1.8.

Chapter	Name	AIR regulations requirement	Status in AIR
1	Enterprise details	 Enterprise Details Location and Extent of the Plant Atmospheric Emission Licence and other Authorisations 	All detail included in the regulated format.
2	Nature of process	 Listed Activities Process Description Unit Processes 	All detail included in the regulated format.
3	Technical Information	 Raw Materials Used and Production Rates Appliances and Abatement Equipment Control Technology 	All detail included in the regulated format.
4	Atmospheric Emissions	 Point Source Emissions Point Source Parameters Point Source Maximum Emission Rates during Normal Operating Conditions Point Source Maximum Emission Rates during Start-up, Maintenance and/or Shut-down Fugitive Emissions Emergency Incidents 	Point source parameters and emissions have been included (Section 4.1 and Section 4.2). Emissions released during start-up, maintenance and/or Shut-down have been discussed (Section 4.3). Management of fugitive emissions across the Natref operations has been described (Section 4.4). The history of Emergency Incidents during the period of assessment and planned management of future Emergency Incidents has been described (Section 4.5).
5	Impact of enterprise on receiving environment		
5.1	Analysis of emissions impact on human health	Must conduct dispersion modelling, must be done in accordance with Regulations; must use NAAQS	Completed as set out by the Regulations.
5.2	Analysis of emissions impact on environment	Must be undertaken at discretion of Air Quality Officer.	Literature review and analysis, where possible, included in AIR.
6	Complaints	Details on complaints received for last two years	Included
7	Current or planned air quality management interventions	Interventions currently being implemented and scheduled and approved for next 5 years.	Information on air quality interventions are included in detail in the motivation reports
8	Compliance and enforcement history	Must set out all air quality compliance and enforcement actions undertaken against the enterprise in the last 5 years. Includes directives, compliance notices, interdicts, prosecution, fines	Included

Table B-1: Comparison of Regulations for the AIR with study approach

Chapter	Name	AIR regulations requirement	Status in AIR
9	Additional information		Included polar plots as an additional visualisation means of ambient air quality as monitored. Independent peer review of dispersion modelling methodology by international expert consultant.

Table B-2: Comparison of Regulations regarding the Air Dispersion Modelling with study approach

AIR Regulations	Compliance with Regulations	Comment
Levels of assessment		
 Level 1: where worst-case air quality impacts are assessed using simpler screening models 	Level 3 assessment using	This Lagrangian Gaussian Puff model is well suited to simulate low or calm wind
 Level 2: for assessment of air quality impacts as part of license application or amendment processes, where impacts are the greatest within a few kilometres downwind (less than 50km) 	CALPUFF	speed conditions. Alternative regulatory models such as the US EPA AERMOD model treats all plumes as straight-line trajectories, which under calm wind conditions grossly over-estimates the
 Level 3. requires more sophisticated dispersion models (and corresponding input data, resources and model operator expertise) in situations: 		plume travel distance.
 where a detailed understanding of air quality impacts, in time and space, is required; 		CALPUFF is able to perform chemical transformations. In this study the
 where it is important to account for causality effects, calms, non-linear plume trajectories, spatial variations in turbulent mixing, multiple source types, and chemical transformations; 		secondary formation of particulate matter were concerns.
 when conducting permitting and/or environmental assessment process for large industrial developments that have considerable social, economic and environmental consequences; 		
 when evaluating air quality management approaches involving multi-source, multi-sector contributions from permitted and non-permitted sources in an airshed; or, 		
 when assessing contaminants resulting from non-linear processes (e.g. deposition, ground-level ozone (O₃), particulate formation, visibility) 		
Model Input		
Source characterisation	Yes	Source characterisation provided in Section 5.1.7.
Emission rates: For new or modified existing sources the	Yes	Emission rates used for each scenario
maximum allowed amount, volume, emission rates and concentration of pollutants that may be discharged to the atmosphere should be used		are provided in Section 5.1.7.
Meteorological data		
Full meteorological conditions are recommended for regulatory applications.	Yes	WRF modelled meteorology (including upper air) corrected with on-site observed meteorology (surface meteorology) (Sections 5.1.4.6 and 5.1.5).
Data period Geographical Information	Yes	3 years (2015 to 2017)

AIR Regulations	Compliance with Regulations	Comment
Topography and land-use		Required for CALMET 3D meteorological file preparation (Section 5.1.4.6.2)
Domain and co-ordinate system	Yes	 Dispersion modelling domain: 57 x 57 km UTM co-ordinate system (WGS84) (Detring 5.4.4.6.4)
General Modelling Considerations		(Section 5.1.4.6.4)
Ambient Background Concentrations, including estimating background concentrations in multi-source areas	Yes	Section 5.1.5.4, Section 5.1.6, and Appendix F
NAAQS analyses for new or modified sources: impact of source modification in terms of ground-level concentrations should be assessed within the context of the background concentrations and the	Yes	Model predicted, 99 th percentile ground- level concentrations compared against current observed concentrations and assessed for contribution to ambient concentrations. Used as an indication of how modifications to the plant will impact ambient concentrations. (Section 5.1.8)
Land-use classification	Yes	Section 5.1.4.2 and Section 5.1.4.6.2
Surface roughness	Yes	Computed from Land-use categories in the CALMET pre-processing step (Section 5.1.4.6.2).
Albedo	Yes	Computed from Land-use categories in the CALMET pre-processing step (Section 5.1.4.6.2).
Temporal and spatial resolution		
Receptors and spatial resolutions	Yes	Sections 5.1.8 and 5.1.4.6.4
Building downwash	Yes	Section 5.1.4.6.5
Chemical transformations	Yes	Sections 5.1.4.3, Section 5.1.4.4 and Appendix D and Appendix E.
General Reporting Requirements		
Model accuracy and uncertainty	Yes	Section 5.1.6, Section 5.1.9, Appendix I and Appendix I
Plan of study	Yes	Section 5.1.1.1
Air Dispersion Modelling Study Reporting Requirements	Yes	As per the Regulations Prescribing the Format of the Atmospheric Impact Report, Government Gazette No. 36904, Notice Number 747 of 2013 (11 October 2013) and as per the Regulations Regarding Air Dispersion Modelling (Government Gazette No. 37804 Notice R533, 11 July 2014).
Plotted dispersion contours	Yes	Section 5.1.8

APPENDIX C: CALMET MODEL CONTROL OPTIONS

The CALMET run type selected for this assessment has been highlighted in blue in Table C-1 below.

Table C-1: CALMET model control options

Run Type	Description of Run Type	Ease of Use and Representativeness	Data availability	Advantages	Disadvantages
No Observations	 Prognostic model data, such as WRF to drive CALMET. No surface or upper air observations input at all. 	 Relatively simple to implement in model Representative of regional meteorological conditions 	WRF data (Lakes Environmental) for 2015, 2016 and 2017 at 4km resolution for 200km by 200km study area (Secunda + Sasolburg)	 Simple to implement Full spatial and temporal variability No overwater data required Cloud cover has spatial distribution Eliminates need for complicated 7 user-input site-specific variables Ideal as screening run as gives very good estimate 	Resolution of prognostic data may potentially be too coarse to be representative of local conditions
Partial Observations	Prognostic model data, such as WRF to drive CALMET PLUS One or more surface stations	 More difficult to implement than only prognostic (WRF) data. Require 7 site-specific model parameters to be specified. Difficulty in dealing with missing data. Potential disagreement between prognostic and surface observations. Very representative and considered 'refined modelling' 	WRF data (Lakes Environmental) for 2015, 2016 and 2017 at 4km resolution for 200km by 200km study area (Secunda + Sasolburg) Sasol operated surface meteorological weather stations (3 Sasolburg ³ and 3 Secunda ⁴)	 Full spatial and temporal variability No overwater data required Refined model run as using combined approach of numerical model and observations. Ability to incorporate surface representative observation data when WRF data is too coarse to fully pick up local effects. 	 Surface data, especially winds may be different to that in the WRF data file User must include 7 site- specific variables Data preparation and missing data
Observations Only	CALMET driven solely by surface, upper air and optional overwater and precipitation stations	 Require 7 site-specific model parameters to be specified. Difficulty in dealing with missing data. Considered representative if sufficient observation stations and site-specific choice of parameters by the modeller. 	 Sasol operated surface meteorological weather stations (3 Sasolburg and 3 Secunda) Closest upper air monitoring station is at OR Tambo International Airport (twice-daily soundings only) 	Very good if upper air and surface stations are located close to the facility and if upper air data are recorded at sunrise and sunset.	 Upper air data typically 12 hourly, poor spatial and temporal resolution Model has to interpolate between 12 hour soundings Soundings at incorrect time of the day.

³ AJ Jacobs (WS, WD, SO₂, NO₂, PM₁₀, PM_{2.5}); Leitrim (WS, WD, TEMP, AMB PRESS, RH, SO₂, NO₂, PM₁₀, PM_{2.5}) and Eco Park (WS, WD, TEMP, RH, AMB PRESS, SOL RAD, RAIN, SO₂, O₃, NO₂, PM₁₀, PM_{2.5}) ⁴ Sasol Club (WS, WD, TEMP, NO₂, SO₂, O₃, PM₁₀, PM_{2.5}, CO); Bosjesspruit (WS, WD, TEMP, NO₂, SO₂, H₂S, PM₁₀, PM_{2.5}) and Embalenhle (WS, WD, TEMP, NO₂, SO₂, PM₁₀, PM_{2.5}, Benzene)

Atmospheric Impact Report: Natref

Run Type	Description of Run Type	Ease of Use and Representativeness	Data availability	Advantages	Disadvantages
					 User has to deal with missing
					surface and upper air data

APPENDIX D: CALPUFF MODEL CONTROL OPTIONS

The CALPUFF run type selected for this assessment has been highlighted in blue in Table D-1 below.

Table D-1: CALPUFF model control options

Run Type	Description of Run Type	Ease of Use and Representativeness	Data availability	Advantages	Disadvantages
Sampling	This sampling scheme employs				
Function	radically symmetric Gaussian				
Puff	puffs and is suitable for far field.				
Sampling Function Slug	This sampling scheme uses a non-circular puff (a "slug), elongated in the direction of the wind during release, to eliminate the need for frequent releases of puffs. Used for near field during rapidly-varying meteorological conditions.				Takes a very long time to run.
Dispersion coefficients MDISP = 1	Dispersion coefficients are computed from measured values of turbulence, sigma-v and sigma-w.	• The user must provide an external PROFILE.DAT file containing these parameters, and select a backup method out of options 2, 3 and 4 below in case of missing data.	• This measured data is not available in South Africa	• Very good if data is available.	These measured parameters are not readily available in South Africa.
Dispersion coefficients MDISP = 2	• Dispersion coefficients are computed from internally- calculated sigma-v, sigma-w using micrometeorological variables (u*, w*, L, etc.).	• This option can simulate AERMOD- type dispersion when the user also selects the use of PDF method for dispersion in the convective boundary layer (MPDF = 1). Note that when simulating AERMOD-type dispersion, the input meteorological data must be from CALMET and cannot be ISC-type ASCII format data. The user should also be aware that under this option the	• The data is obtained from WRF input information.	• Based on improved theoretical work and is an improvement over Pasquill- Gifford.	The coefficients are derived from other parameters.

Run Type	Description of Run Type	Ease of Use and Representativeness	Data availability	Advantages	Disadvantages		
		CALPUFF model will be more sensitive					
		to the appropriateness of the land use					
		characterization.					
		The current default selection is			 Based on discreet 		
		MDISP = 3, which is ISC-type			classification scheme (not		
	Pasquill-Gifford (PG)	dispersion. Given the demonstrated			continuous function).		
Dispersion	dispersion coefficients for rural	improved characterization of dispersion		Simple to use if you don't have	Based on field experiments		
coefficients	areas (computed using the	provided by AERMOD, and EPA's		detailed meteorological information	done elsewhere, may or may		
MDISP = 3	ISCST3 multi-segment	intention to replace ISC with AERMOD,		This option can be run using fairly	not be representative of		
	approximation) and McElroy-	use of AERMOD-like dispersion		hasic meteorological data			
	Pooler (MP) coefficients in	(MDISP = 2, and MPDF = 1) is also			Previous projects done using		
	urban areas.	acceptable, but likely will be of most			this scheme however have		
		benefit for short-range complex flow			provided good correlation over		
		applications.			this area.		
Dispersion	Same as MDISP = 3, except						
coefficients	PG coefficients are computed						
MDISP = 4	using the MESOPUFF II						
	equations						
	CTDM sigmas are used for	When selecting this option, the user					
Dispersion	stable and neutral conditions.	must provide an external					
coefficients	For unstable conditions, sigmas	PROFILE.DAT file, and select a					
MDISP = 5	are computed as in MDISP=3	backup method out of options 2, 3 and					
	described above.	4 above in case of missing data.					
		RIVAD is a 6-species scheme	 In order to use the RIVAD 		 User has to input the NO and 		
		wherein NO and NO $_2$ are treated	scheme, the user must divide		NO2 emissions which are not		
Chemical	Pseudo-first-order chemical	senarately	the NO _x emissions into NO and	 In several tests conducted to date, 	always known for all sources.		
transformation	mechanism for SO ₂ , SO ₄ ²⁻ , NO,	• In the RIVAD scheme the conversion	NO ₂ for each source.	the results have shown no significant	 User has to input the ozone 		
	NO ₂ , HNO ₃ , and NO ₃ -	of SO_2 to sulfates is not RH-dependent	Two options are specified for	differences between the RIVAD and	concentrations which are not		
	(RIVAD/ARM3 method)	• The conversion of NO ₂ to nitrates is	the ozone concentrations: (1)	MESOPUFF II options.	always known.		
		RH-dependent	hourly ozone concentrations		The model is restricted to		
			from a network of stations, or (2)		rural conditions.		

Run Type	Description of Run Type	Ease of Use and Representativeness	Data availability	Advantages	Disadvantages
			a single user defined ozone		
			value.		
			 The background ammonia 		
			concentrations required for the		
			HNO ₃ /NH ₄ NO ₃ equilibrium		
			calculation can be user-specified		
			or a default value will be used.		
			The MESOPUFF II scheme		
			assumes an immediate		
	Pseudo-first-order chemical	MESOPUFF II is a 5-species scheme	conversion of all NO to NO2.		
Chamical		 in which all emissions of nitrogen oxides are simply input as NO_x. In the MESOPUFF II scheme, the 	Two options are specified for	 In several tests conducted to date 	
			the ozone concentrations: (1)	the results have shown no significant	• Liser has to input the ozone
			hourly ozone concentrations	differences between the RIVAD and	concentrations which are not
transformation	mechanism for SO ₂ , SO ₄ ²⁻ , NO _x ,	conversion of SO ₂ to sulfates is	from a network of stations, or (2)	MESOPUEE II ontions for sulfate and	always known
MESOPUEE II	HNO ₃ , and NO ₃ - (MESOPUFF	dependent on relative humidity (RH),	a single user defined ozone	nitrate formation	• NO to NO ₂ conversion is not
	II method)	with an enhanced conversion rate at	value.	The model is applicable to both	included. In model.
		high RH.	The background ammonia	urban and rural conditions.	
		The conversion of NO _x to nitrates is	concentrations required for the		
		RH-dependent.	HNO ₃ /NH ₄ NO ₃ equilibrium		
			calculation can be user-specified		
			or a default value will be used.		
User-specified					
diurnal cycles of					
transformation					
rates					
No chemical					
conversion					

APPENDIX E: THE NO₂/NO_x Conversion Ratios for NO₂ Formation

Scire and Borissova (2011) analysed hourly monitored NO₂ and NO_x data for 2006 at 325 monitoring sites throughout USA (approximately 2.8 million data points for each species), These observations were grouped into a number of concentration bins and were used to compute bin maximums and bin average curves. Short-term (1-hr) NO₂/NO_x ratios were developed on bin-maximum data, whereas the long-term (annual average) NO₂/NO_x ratios were based on bin-averaged data. The method was subsequently tested using the NO₂/NO_x ratios applied to the observed NO_x at selected stations to predict NO₂, and then compared to observed NO₂ concentrations at that station. As illustrated in the examples, Figure E-1 and Figure E-2, using these empirical curves provide a reasonable estimate of the observed NO₂ can be obtained, albeit mostly more conservative. In Figure E-3, the method is compared to the assumption of 100% conversation over the short-term, which clearly illustrates the extreme conservatism, especially at elevated concentrations.

Figure E-1: Comparison of observed with predicted NO₂ concentrations (Long Island, NY) using the derived short-term NO₂/NO_x ratios (Scire and Borissova, 2011)

Figure E-2: Comparison of observed with predicted NO₂ concentrations (Chicago, IL) using the derived short-term NO₂/NO_x ratios (Scire and Borissova, 2011)

Figure E-3: Observed versus predicted NO₂ concentrations (Bahrain) using the derived short-term NO₂/NOx ratios (Scire and Borissova, 2011)

It was decided that the NO₂/NO_x conversion factors described by Scire and Borissova (2011) and as given in Table E-1, will be employed in this study. Observed NO₂/NO_x ratios at the Sasolburg monitoring stations were also analysed and compared to the factors in the table (Figure E-1). It is shown in the table and Figure E-4, that the Scire and Borissova ratios would also be applicable in the current study since it would produce estimates similar or more conservative than if the actual NO₂/NO_x ratios at the site would have been used instead.

	0.0		(NO ₂ /NOx Ratios						
Bin				Saso	lburg	Scire and Borissova 2011				
	Min	Max	Centre	AJ Jacobs 2010-2012	Ecopark 2012	Bin Average	1-Hour Max			
1	0	19	9	0.658	0.521	0.7980	0.9938			
2	19	38	28	0.714	0.605	0.8130	0.9922			
3	38	75	56	0.657	0.501	0.7306	0.9844			
4	75	113	94	0.506	0.506 0.428		0.9094			
5	113	150	132	0.380	0.305	0.4370	0.7477			
6	150	188	169	0.309	0.117	0.3553	0.6085			
7	188	235	212	0.265	0.311	0.3013	0.4976			
8	235	282	259	0.222	0.019	0.2559	0.4173			
9	282	329	306	0.208	0.114	0.2276	0.3543			
10	329	376	353	0.184	0.105	0.2081	0.3056			
11	376	423	400	0.216	0.164	0.1852	0.2684			
12	423	470	447	0.161	0.114	0.1809	0.2404			

Table E-1: NO₂/NO_x conversation ratios for NO₂ formation

	60	n a sufuration d	(NO ₂ /NOx Ratios						
Bin				Saso	lburg	Scire and	Scire and Borissova 2011			
	Min	Max	Centre	AJ Jacobs 2010-2012	Ecopark 2012	Bin Average	1-Hour Max			
13	470	517	494	0.135	0.101	0.1767	0.2194			
14	517	564	541		0.153	0.1546	0.2035			
15	564	611	588		0.119	0.1524	0.1912			
16	611	658	635		0.071	0.1476	0.1813			
17	658	705	682		0.169	0.1402	0.1726			
18	705	752	729		0.157	0.1363	0.1645			
19	752	846	799		0.133	0.1422	0.1527			
20	846	940	893		0.164	0.1223	0.1506			
21	940	1128	1034		0.164	0.1087	0.1474			
22	1128	1316	1222			0.1110	0.1432			
23	1316	1504	1410			0.1112	0.139			
24	1504	1786	1645			0.1165	0.1337			

APPENDIX F: TIME SERIES PLOTS FOR THE MEASURED AMBIENT AIR QUALITY IN THE STUDY AREA

A summary of the time series plots for the measured data as provided by Sasol is given in the following section.

Figure F-1: Summary of meteorological and ambient air quality data received for Leitrim (2015-2017)

Figure F-2: Summary of meteorological and ambient air quality data received for AJ Jacobs (2015-2017)

Figure F-3: Summary of meteorological and ambient air quality data received for Eco Park (2015-2017)

Figure F-4: Summary of meteorological and ambient air quality data received for Three Rivers (2015-2017)

Figure F-5: Summary of meteorological and ambient air quality data received for Sharpeville (2015-2017)

Figure F-6: Summary of meteorological and ambient air quality data received for Zamdela (2015-2017)

APPENDIX G: PREDICTED BASELINE AND OBSERVED AIR CONCENTRATIONS

The following tables summarise the predicted baseline SO₂ and NO₂ concentrations at the Sasol and DEA monitoring site locations, respectively. The peak (maximum), 99th, 90th, 50th and annual average values are given for each of the simulated (SO and Natref combined) years, 2015, 2016 and 2017. The corresponding observed concentration values are also summarised in the tables for comparison. Estimates of background concentrations were obtained from the observed values at the ranked position when no contributions from the simulated sources were predicted.

		SO ₂ Concentration (μg/m³)											
Description	Year	Leitrim		AJ Ja	cobs	Eco	Park	Three	Rivers	Sharpeville		Zamdela	
		Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed
	2015	196.6	1007.4	435.5	603.6	176.5	881.5	37.9	591.6	65.4	950.4	337.0	414.5
Maximum	2016	254.7	515.9	454.6	676.0	157.7	842.4	31.6	474.8	59.3	512.3	344.4	647.7
IWIdXIIIIUIII	2017	187.0	425.8	409.3	718.5	311.6	891.5	66.6	539.3	75.8	462.8	290.8	356.1
	Average	212.8	649.7	433.2	666.0	215.3	871.8	45.4	535.2	66.8	641.8	324.1	472.8
	2015	65.4	185.0	156.0	284.1	33.4	239.4	10.7	110.1	12.9	135.8	101.1	172.7
90th Percentile	2016	68.6	204.6	157.2	307.3	53.3	261.6	10.2	163.3	15.3	127.1	98.2	185.3
55 ^m Percentile	2017	66.8	172.6	197.7	320.6	45.7	230.4	11.7	141.6	14.0	180.7	96.1	165.6
	Average	66.9	187.4	170.3	304.0	44.1	243.8	10.9	138.3	14.1	147.9	98.4	174.6
	2015	22.9	82.3	4.3	111.2	0.7	89.9	0.5	30.3	0.4	38.3	31.8	52.4
90th Percentile	2016	22.1	78.5	7.1	120.8	1.2	82.5	0.5	30.5	0.6	34.0	29.9	52.6
50 Tercentile	2017	22.4	70.3	12.6	173.4	1.2	65.5	0.5	36.2	0.7	49.0	30.0	44.3
	Average	22.4	77.0	8.0	135.2	1.0	79.3	0.5	32.3	0.6	40.4	30.6	49.8
	2015	0.0	20.0	0.0	46.4	0.0	42.8	0.0	8.0	0.0	10.9	0.1	9.2
50th Percentile	2016	0.0	28.4	0.0	40.7	0.0	28.2	0.0	7.6	0.0	7.0	0.1	9.8
50 Tercentile	2017	0.0	24.6	0.0	78.0	0.0	21.2	0.0	10.1	0.0	8.8	0.0	8.2
	Average	0.0	24.3	0.0	55.0	0.0	30.7	0.0	8.6	0.0	8.9	0.1	9.1
	2015	5.7	33.3	5.7	56.3	1.1	51.5	0.4	14.5	0.5	19.1	8.1	21.4
Annual Average	2016	5.7	39.3	6.9	57.1	1.8	41.8	0.4	15.5	0.6	15.2	8.1	22.1
/ initial / Weitage	2017	5.5	33.5	9.4	89.7	1.8	33.4	0.5	17.9	0.6	20.8	7.8	18.7
	Average	5.7	35.4	7.3	67.7	1.6	42.2	0.5	16.0	0.6	18.4	8.0	20.7
Background	2015		26.7		64.3		72.7		22.4		30.3		10.4
when simulation	2016		36.6		54.3		59.1		21.3		22.8		10.9
indicated little	2017		30.0		101.3		44.3		26.2		34.4		9.9

Table G-1: Simulated SO₂ concentration from routine emissions and observed SO₂ concentration statistics

Report No.: 17SAS06B

Atmospheric Impact Report: Natref
							SO ₂ Concentr	ration (µg/m³)					
Description	Year	Leit	trim	AJ Ja	cobs	Eco	Park	Three	Rivers	Sharp	oeville	Zam	dela
		Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed
contribution (0.1 µg/m³))	Average		31.1		73.3		58.7		23.3		29.2		10.4

Table G-2: Simulated NO₂ concentration from routine emissions and observed NO₂ concentration statistics

							NO ₂ Concent	ration (µg/m³)					
Description	Year	Lei	trim	AJ Ja	acobs	Eco	Park	Three	Rivers	Sharp	oeville	Zam	dela
		Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed
	2015	97.8	178.4	269.8	127.4	97.5	782.9	36.3	178.6	54.8	344.0	193.6	168.1
Maximum	2016	138.9	140.7	248.5	125.4	94.9	373.1	43.5	148.4	54.3	176.8	272.3	199.8
waximum	2017	144.2	117.4	249.2	164.7	174.6	439.8	57.3	178.2	54.9	104.0	144.4	141.7
	Average	127.0	145.5	255.8	139.2	122.3	531.9	45.7	168.4	54.6	208.3	203.4	169.9
	2015	57.8	64.9	94.2	79.6	36.4	85.1	12.6	104.6	17.7	156.7	63.8	100.4
00th Democratile	2016	58.4	87.2	104.8	73.3	48.0	86.0	12.2	92.1	19.1	104.7	61.6	123.2
99 ^a Percentile	2017	57.5	77.9	135.3	81.4	46.8	84.2	14.1	95.1	18.4	55.9	61.1	91.3
	Average	57.9	76.7	111.4	78.1	43.7	85.1	12.9	97.3	18.4	105.8	62.2	105.0
	2015	22.8	39.0	10.7	46.3	1.2	52.9	0.6	64.5	0.6	96.3	38.4	62.4
	2016	22.1	47.8	15.8	42.8	1.8	51.1	0.6	53.1	1.0	62.7	39.1	73.4
90 ^a Percentile	2017	22.9	42.9	22.6	52.1	1.8	49.2	0.7	54.3	0.9	34.1	36.5	55.8
	Average	22.6	43.2	16.3	47.1	1.6	51.1	0.6	57.3	0.8	64.4	38.0	63.9
COth Dans and its	2015	0.0	17.3	0.0	15.3	0.0	15.9	0.0	24.8	0.0	31.3	0.1	24.6
50"' Percentile	2016	0.0	17.6	0.0	16.1	0.0	15.0	0.0	21.9	0.0	22.6	0.1	24.2

							NO ₂ Concent	ration (µg/m³)					
Description	Year	Leitrim		AJ Ja	AJ Jacobs Eco		Park Three Rivers		Sharpeville		Zamdela		
		Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed	Simulated	Observed
	2017	0.0	15.4	0.0	25.1	0.0	14.4	0.0	20.8	0.0	11.6	0.1	21.3
	Average	0.0	16.8	0.0	18.8	0.0	15.1	0.0	22.5	0.0	21.8	0.1	23.4
	2015	6.0	21.2	5.2	21.0	1.2	22.3	0.5	31.5	0.7	43.9	8.0	30.1
	2016	6.0	22.8	6.6	20.3	1.7	21.5	0.5	26.4	0.8	29.7	8.3	32.6
Annual Average	2017	5.9	19.2	8.2	26.6	1.8	20.5	0.6	26.3	0.8	15.7	7.6	26.4
	Average	6.0	21.1	6.7	22.7	1.6	21.5	0.6	28.1	0.8	29.8	8.0	29.7
Background	2015		19.3		23.3		39.2		53.8		77.1		24.6
(observed value when simulation indicated little	2016		20.6		20.5		33.4		43.6		48.9		24.2
	2017		18.9		30.1		32.8		44.6		27.0		22.2
µg/m ³))	Average		19.6		24.6		35.1		47.3		51.0		23.6

APPENDIX H: MANAGEMENT OF UNCERTAINTIES

Dispersion Model Uncertainties

In the US EPA Guideline on Air Quality Models (U.S. EPA, 2017), the need to address the uncertainties associated with dispersion modelling is acknowledged as an important issue that should be considered. The US Guideline divides the uncertainty associated with dispersion model predictions into two main types (U.S. EPA, 2017), as follows:

- Reducible uncertainty, which results from (1) Uncertainties in the input values of the known conditions (i.e., emission characteristics and meteorological data); (2) errors in the measured concentrations which are used to compute the concentration residuals; and (3) inadequate model physics and formulation. The "reducible" uncertainties can be minimized through better (more accurate and more representative) measurements and better model physics.
- Inherent uncertainty is associated with the stochastic (turbulent) nature of the atmosphere and its representation (approximation) by numerical models. Models predict concentrations that represent an ensemble average of numerous repetitions for the same nominal event. An individual observed value can deviate significantly from the ensemble value. This uncertainty may be responsible for a ± 50% deviation from the measured value.

Atmospheric dispersion models are often criticised for being inadequate since "...*it is only a model approximating reality*", and therefore include inherent uncertainty. Both reducible and inherent uncertainties mean that dispersion modelling results may over- or under-estimate measured ground-level concentrations at any specific time or place. However, the US EPA Guideline on Air Quality Models (U.S. EPA, 2017) also states that:

"Models are more reliable for estimating longer time-averaged concentrations than for estimating short-term concentrations at specific locations; and the models are reasonably reliable in estimating the magnitude of highest concentrations occurring sometime, somewhere within an area. For example, errors in highest estimated concentrations of \pm 10 to 40 percent are found to be typical, certainly well within the often-quoted factor-of-two accuracy that has long been recognized for these models."

To minimise the overall uncertainty, but specifically the "reducible uncertainty", the following simple principles were followed in the investigation:

- Understanding the objectives of the investigation;
- Demonstrating that the model inputs are as correct as possible;
- Understanding and stating the model performance limitations;
- Demonstrating that the modelling process has been conducted appropriately and in line with both local DEA requirements and international practice;
- Including any validating information from monitoring that might be available; and,
- To be conservative in cases where there is greater uncertainty (e.g. conversion of NO to NO₂).

Although the existence of model uncertainty is well-accepted, it does not exclude the use of dispersion modelling results in making important air quality impact decisions. The uncertainties should simply be acknowledged and understood that, given their inherent uncertainty, current dispersion models are a "best-case" approximation of what are otherwise very complex physical processes in the atmosphere. An accepted dispersion model (i.e., CALPUFF) was selected for the analysis to minimize some of these uncertainties. The US EPA states that when dispersion models such as CALPUFF are used to assess ground-level concentration and when a sufficiently large number of meteorological conditions are considered, the modelling results should ideally fall well within the often quoted "factor of two" accuracy for these modelled (U.S. EPA, 2017).

Validation of Predictions

Model verification and validation (V&V) are the primary processes for quantifying and building credibility in numerical models. There are distinct differences between the two processes, as described below:

- Verification is the process of determining that a model implementation accurately represents the developer's conceptual description of the model and its solution.
- Validation is the process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model.

Whilst V&V cannot prove that a model is correct and accurate for all possible scenarios, it can provide evidence that the model is sufficiently accurate for its intended use.

A rigorous V&V programme was not completed as part of the study; however, regular sanity checks on model results and comparisons with observations were done, as discussed in Section 5.1.6. An attempt was also made to quantify the level of agreement between observed data and model prediction, as well as the predictive accuracy of the model once the necessary adjustments have been made (such as including the estimated background concentrations). In this regard, the CALPUFF model's performance was evaluated by comparing the modelling results for the years 2015, 2016 and 2017 to the monitoring data collected over the same time period. In particular, the predicted SO₂ and NO₂ concentrations arising from both the SO and Natref plant were include in the comparison.

The performance evaluation was completed using the fractional bias method, since this statistical technique is one of the evaluation methods recommended by the U.S. EPA for determining dispersion model performance (U.S. EPA 1992). The fractional bias was computed for SO₂ and NO₂ as predicted and observed at monitoring stations within the study area. The fractional biases of the means were shown to be well within a factor of two, which the U.S. EPA consider to be a reasonable performance target for a dispersion model before it is used for refined regulatory analysis (U.S. EPA 1992).

Scenario Simulations

Since the focus of the study has been to illustrate the relative changes with the introduction of different emission conditions (i.e. emission rates, exit gas temperatures and velocities), whilst maintaining the same stack heights and diameters, it is expected that the model errors would mostly be carried between the different modelling scenarios. Therefore, expressing the changes as incremental and relative to the baseline scenario, it is expected that these errors would be mostly cancel each other out.

Ambient Monitoring Uncertainty

Sasol operates a total of four ambient air quality monitoring stations in and around Sasolburg, namely at Sasol 1 Fence Line, AJ Jacobs, Leitrim and Eco Park. No data was provided for the Sasol 1 Fence Line monitoring station. The DEA operate three monitoring stations in the study area, namely Zamdela, Three Rivers and Sharpeville. Data from the Sasol and DEA monitoring stations for 2015, 2016 and 2017 were included in this investigation.

All of the abovementioned Sasol monitoring stations are ISO/IEC17025 accredited, to ensure data integrity and data quality as well as to ensure that the data obtained from the monitoring stations are representative of the ambient air when measured. Data availability and credibility is maximised through:

- Regular (at least on a weekly basis) visits of the monitoring stations to ensure the stations are functioning properly.
- Dynamic calibrations are conducted on at a quarterly basis, however where possible more frequent calibrations have been done.
- Certified calibration gas is used and obtained from reputable vendors
- Inter-laboratory comparisons are done between Sasol's Sasolburg and Secunda monitoring stations as well as between Sasolburg, Secunda and a third-party calibration laboratory.
- Participation in the National Metrological Laboratory's national inter-laboratory comparisons to ensure that the system is in line with the rest of the accredited laboratories in South Africa.

Although the ISO/IEC 17025 System requires a quarterly data availability of 80%, Sasol's internal data availability, tracked on a monthly Scorecard, is a monthly data availability of 90%.

Based on the uncertainty calculations completed as per the ISO/IEC17025 requirements, Sasol's uncertainty in measurements on its ambient air quality monitoring stations is between 3% and 5% with a level of confidence of 95%. This has been confirmed through inter-laboratory comparisons and is confirmed on a regular basis.

Upper Air Meteorological Data

Although meteorological data from the monitoring stations described in the previous section are available for input into the CALPUFF dispersion model, there is a lack of upper air meteorology. Furthermore, it is anticipated that the wind observations at AJ Jacobs may be compromised due to nearby trees and building structures (see Section 5.1.5.1). The lack of appropriate meteorological information is often the single most important limiting factor in modelling accuracy. It is also the most subjective in deciding just how many data are needed, from which location and how accurate they must be.

The CALMET wind field model requires, as a minimum, meteorological data from at least one surface and an upper air station. This information is then used to "seed" the three-dimensional wind field with an initial solution of a relatively simple mass conservation model. CALMET does not include momentum, energy, or moisture conservation equations, and is therefore classified as a diagnostic model.

It is expected, that a wind field developed using all the parameters that could influence the flow, thermal and turbulence mechanisms should improve the accuracy of the dispersion predictions. For simulated data, the Weather Research and Forecasting mesoscale model (known as WRF) was used. The WRF Model is a next-generation mesoscale numerical weather prediction system designed for both atmospheric research and operational forecasting needs. It features two dynamical cores, a data assimilation system, and a software architecture facilitating parallel computation and system extensibility. The model serves a wide range of meteorological applications across scales from tens of meters to thousands of kilometres. WRF can generate atmospheric simulations using real data (observations, analyses) or idealized conditions. WRF offers operational forecasting a flexible and computationally-efficient platform, while providing recent advances in physics, numeric, and data assimilation contributed by developers across the very broad research community.

WRF data for the study domain was purchased from Lakes Environmental that has proven record of generating WRF data ready for use in the CALMET modelling suite. The dataset included the years 2015, 2016 and 2017 at 4 km resolution for a 200 km by 200 km study area. The model setup used for WRF was provided by Lakes Environmental and is included in Appendix K.

The WRF model together with the meteorological observations provide a 'first-guess field', which is then modified by the CALMET diagnostic model to take account of terrain and land-use features that are at a smaller spatial scale than the terrain

used by the prognostic model. The main purpose of this approach is to increase the horizontal resolution of the meteorological fields.

Emission Inventory Uncertainty

In addition to meteorological input data, the uncertainty associated with the emissions inventory needs to be accommodated in the results. All emissions used in the simulations of the baseline condition were based on iso-kinetic measurement campaigns.

Natref makes use of reputable sampling companies for its third party measurement campaign. All third party (and *ad hoc*) sampling requests (or requirements) for Natref has to comply with AQA Section 21, Schedule 2 of the Listed Activities and Minimum Emission Standard. Furthermore, Natref has, as far as possible, standardised on US EPA sampling methodologies. Analyses of the samples are also done by an ISO/IEC17025 accredited laboratory to further control the quality of the results.

Where *ad hoc* sampling is done, Natref's philosophy is aligned with the requirements of the AQA Section 21, namely that all point sources must be sampled at least once a year.

Third-Party Emission Monitoring

The uncertainty associated with third-party emission's measurements is considered to be up to 10% with a level of confidence of 95%. This uncertainty is based on the isokineticity of the isokinetic sampling, as well as the uncertainty associated with the sample taking and chemical analysis of gaseous components.

According to the Natref quality control system, all third-party contractors for isokinetic sampling need to comply with the following control criteria:

- Their entire sampling staffs undergo the training associated with the UK-based Monitoring Certification Scheme (MCERTS): Manual Stack emissions monitoring program (MCERTS 2011);
- An electronic automated sampler is used for all isokinetic sampling;
- The pitot tubes used for sampling are calibrated at least on a quarterly basis;
- The pneumatic pressure sensors on the sampler are also calibrated on at least a quarterly basis; and
- The dry gas meters are checked on a regular basis and replaced every 6 months.

Ad-Hoc Emissions Sampling

SANAS is compiling an accreditation system for *ad hoc* sampling and as soon as this system is in place, the uncertainty of the measurements will be confirmed; however it is not expected to be higher than 10%.

The Minimum Emission Standards requires that sampling be conducted at normal operating conditions; therefore the emissions information included in the dispersion model is aligned with normal operating conditions on site. The sampling schedule is communicated to the plant managers with the aim of having process conditions as representative as possible to normal operations. Sampling upset conditions often poses a challenge from both a logistical and safety point of view, since safety requirements require as few people as possible on the plant during severe upset conditions and therefore sampling cannot be done during such conditions.

PM2.5 and PM10 Air Emissions

All particulate matter was assumed to be PM2.5 since it was not possible to establish the PM2.5//PM10 split.

Non-Natref Air Emissions

No attempt was made to estimate the emissions from non-industrial activities within regional communities. Instead, the community contribution (and other sources) of a particular compound was discussed in Section 5.1.5.4. and Section 5.1.6.

APPENDIX I: GUIDANCE NOTE ON TREATMENT OF UNCERTAINTIES

The Intergovernmental Panel on Climate Change (IPCC) produced a Guidance Note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties. These notes define a common approach and calibrated language that can be used broadly for developing expert judgments and for evaluating and communicating the degree of certainty in findings of the assessment process. Communicating the degree of certainty in key findings relies on expressing the:

- Confidence in the validity of a finding, based on the type, amount, quality, and consistency of evidence (e.g., mechanistic understanding, theory, data, models, expert judgment) and the degree of agreement. Confidence is expressed qualitatively.
- Quantified measures of uncertainty in a finding expressed probabilistically (based on statistical analysis of observations or model results, or expert judgment).

The Guidance Note proposes the use of the following dimensions to evaluate the validity of a finding: the type, amount, quality, and consistency of evidence (summary terms: "limited," "medium," or "robust"), and the degree of agreement (summary terms: "low," "medium," or "high"), as summarised in the figure below.

	High Agreement	High Agreement	High Agreement						
	Limited Evidence	Medium Evidence	Robust Evidence						
	Medium Agreement	Medium Agreement	Medium Agreement						
	Limited Evidence	Medium Evidence	Robust Evidence						
↑	Low Agreement	Low Agreement	Low Agreement						
Agreement	Limited Evidence	Medium Evidence	Robust Evidence						
	Evidence (type, amount, quality, consistency) →								

	CONFIDENCE LEVEL	
low confidence	modium confidence	high confidence
very low confidence	medium connuence	very high confidence

Figure I-1: A depiction of evidence and agreement statements and their relationship to confidence. Confidence increases towards the top-right corner as suggested by the increasing strength of shading. Generally, evidence is most robust when there are multiple, consistent independent lines of high-quality evidence.

Generally, evidence is most robust when there are multiple, consistent independent lines of high-quality evidence. The guide further provides advice for a traceable account describing the evaluation of evidence and agreement, as follows:

- For findings with high agreement and robust evidence, present a level of confidence or a quantified measure of uncertainty.
- For findings with high agreement or robust evidence, but not both, assign confidence or quantify uncertainty when
 possible. Otherwise, assign the appropriate combination of summary terms for your evaluation of evidence and
 agreement (e.g., robust evidence, medium agreement).
- For findings with low agreement and limited evidence, assign summary terms for your evaluation of evidence and agreement.
- In any of these cases, the degree of certainty in findings that are conditional on other findings should be evaluated and reported separately.

A level of confidence is expressed using five qualifiers: "very low," "low," "medium," "high," and "very high." It synthesizes the author teams' judgments about the validity of findings as determined through evaluation of evidence and agreement. Figure I-1 depicts summary statements for evidence and agreement and their relationship to confidence. There is flexibility in this relationship; for a given evidence and agreement statement, different confidence levels could be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence. Confidence cannot necessarily be assigned for all combinations of evidence and agreement in Figure I-1. Presentation of findings with "low" and "very low" confidence should be reserved for areas of major concern, and the reasons for their presentation should be carefully explained. Confidence should not be interpreted probabilistically, and it is distinct from "statistical confidence." Additionally, a finding that includes a probabilistic measure of uncertainty does not require explicit mention of the level of confidence associated with that finding if the level of confidence is "high" or "very high."

Likelihood, as defined in Table I-1, provides calibrated language for describing quantified uncertainty. It can be used to express a probabilistic estimate of the occurrence of a single event or of an outcome (e.g., a climate parameter, observed trend, or projected change lying in a given range). Likelihood may be based on statistical or modelling analyses, elicitation of expert views, or other quantitative analyses.

Term	Likelihood of the Outcome
Virtually certain	99-100% probability
Very likely	90-100% probability
Likely	66-100% probability
About as likely as not	33 to 66% probability
Unlikely	0-33% probability
Very unlikely	0-10% probability
Exceptionally unlikely	0-1% probability

Table I-1: Likelihood scale

The categories defined in this table can be considered to have "fuzzy" boundaries. A statement that an outcome is "likely" means that the probability of this outcome can range from \geq 66% (fuzzy boundaries implied) to 100% probability. This implies that all alternative outcomes are "unlikely" (0-33% probability). When there is sufficient information, it is preferable to specify the full probability distribution or a probability range (e.g., 90-95%) without using the terms in Table I-1. "About as likely as not" should not be used to express a lack of knowledge.

APPENDIX J: SENSITIVE RECEPTORS INCLUDED IN THE DISPERSION MODEL SIMULATIONS

Receptor code	Receptor details	Distance from centre
Leitrim	Sasol Leitrim monitoring station	5.1
AJ Jacobs	Sasol AJ Jacobs monitoring station	3.5
EcoPark	Sasol EcoPark monitoring station	3.8
Three Rivers	VTAPA Three Rivers monitoring station	21.8
Sharpeville	VTAPA Sharpville monitoring station	13.0
Zamdela	VTAPA Zamdela monitoring station	4.2
34	HTS Secondary School	2.3
43	Sasolburg Provincial Hospital	3.0
52	Sasolburg Clinic	3.2
24	Lumiere Primary School	3.3
14	AJ Jacobs Primary School	3.3
19	Fonteine Primary School	3.4
25	Malakabeng Primary School	3.6
15	Bofula-Tshepe Primary School	4.0
29	Tsatsi Primary School	4.0
32	Cedar Secondary School	4.0
51	Zamdela Hospital Zumayear	4.1
42	Vaalpark Hospital	4.1
38	Sasolburg High School	4.1
49	Clinic A Zamdela	4.2
33	Fakkel Secondary School	4.3
37	Nkopoleng Secondary School	4.3
36	Kahobotjha-sakubusha Secondary School	4.3
35	Iketsetseng Secondary School	4.3
48	Clinic B Zamdela	4.3
39	Vaalpark Articon SecondarySchool	4.4
20	Isaac Mhlambi Primary School	4.4
26	Noord Primary School	4.5
44	Zamdela Community Clinic	4.9
30	Vaalpark Primary School	5.0
28	Theha Setjhaba Primary	5.2
18	Credo Primary School	5.3
31	Afrikaans Hoërskool	5.6
22	Leewspruit Primary	5.6
23	Lehutso Primary School	5.7
50	Harry Gwala Clinic Creche	5.7
21	Kopanelang Thuto Primary School	8.3
41	Vaal Christian Secondary	10.0
40	Pele-ya-pele Secondary School	10.5
27	Taaibos Primary School	11.3
17	Vukuzake Primary School	12.3
16	Bokantsho Primary School	20.0

Table J-1: Discrete sensitive receptors included in the dispersion model simulations

APPENDIX K: WRF MODEL SETUP

Lakes Environmental WRF Modeling

Met Data Services

LAKES ENVIRONMENTAL WRF MODELING

DRAFT

1	Intr	oduction	
2	WR	E Description 1	
3	WR	F Processing Specifications	
	3.1	Input of Meteorological Data	
	3.2	Nested Grids Domains 2	
	3.3	WRF Physics Options	
	3.4	Additional WRF Modeling Information	
	3.5	WRF Output for AERMET	
	3.6	WRF Output for CALMET	
4	Add	litional Information	

1 Introduction

This document provides a brief description of WRF modeling at *Lakes Environmental* and the type of outputs generated. Our WRF modeling focuses on generating high resolution data with enough information to create meteorological input files for the CALPUFF and AERMOD modeling systems.

2 WRF Description

The Weather Research and Forecasting model (WRF) is a prognostic meteorology model developed in a collaborative partnership between the U.S. National Center for Atmospheric Research (NCAR), the National Centers for Environmental Prediction (NCEP), and others. The WRF model is a limited-area, non-hydrostatic, terrain-following sigma-coordinate model designed to simulate or predict mesoscale and regional-scale atmospheric circulation.

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com

3 WRF Processing Specifications

3.1 Input of Meteorological Data

WRF does not directly use conventional meteorological data from airport reports. Instead, the model uses objective analysis of global weather reports. Objective analysis is a process of analyzing the observed data and outputting them into a regular grid. The meteorological field is "balanced" to account for the energy and momentum equations of the atmosphere. These objective analyses are products of global models, which are maintained by national weather centers or federal agencies such as UKMO (United Kingdom Meteorological Office) or US NCEP.

Lakes Environmental used the NCEP Global Forecast System (GFS) 0.5-degree resolution data (approximately 50-km resolution) for input into WRF. GFS 0.5-deg data is given every 6 hours at 00, 06, 12, and 18Z.

Sea Surface Temperature (SST) data comes from the GFS 0.5 degree data but updated daily as each WRF simulation is done for 24 hours.

3.2 Nested Grids Domains

WRF uses a nested grid approach allowing an area of interest to be modeled without the penalty of excessive run times created by having a fine grid over the entire modeling domain. Depending on the application, Lakes Environmental employs 12-km or 4-km grid spacing at the highest resolution (inner grid).

Tables 1 presents the grid dimensions and number of grid points that that are commonly used.

Table 1. WRF Nested Domain Grid

Domain	Resolution (km)	Number of Grid Points in X and Y
Domain 1	36	31 x 31
Domain 2	12	31 x 31
Domain 3 (if necessary)	4	31 x 31

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com

3.3 WRF Physics Options

The WRF model provides many modeling options which can greatly affect the final output. In Table 2 below, we have listed the physics options most commonly used for the WRF processing.

	WRF Physics Options								
#	Туре	Options Used							
1	Microphysics	WSM 3-class scheme mp_physics = 3							
2	Long-wave Radiation	RRTM Logwave scheme ra_lw_physics = 1							
3	Short-wave Radiation	Dudhia Shortwave ra_sw_physics = 1							
4	Surface Layer	Monin-Obukhov (MM5 MRF PBL) sf_sfclay_physics = 1							
5	Land Surface	Unified Noah Land Surface model sf_surface_physics = 2							
6	Planetary Boundary Layer	Yonsei University scheme (YSU) bl_pbl_physics = 1							
7	Cumulus parameterization	Betts-Miller-Janjic scheme cu_physics = 2							

Table E. Thysics options oscallor with modeling	Table 2.	Physics	Options	Used fo	r WRF	Modeling
---	----------	---------	---------	---------	-------	----------

See link below to the UCAR web site for descriptions and references of WRF physics options:

http://www2.mmm.ucar.edu/wrf/users/wrfv3.5/phys_references.html

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com

3.4 Additional WRF Modeling Information

The information below describes other modeling parameters taken into account for *Lakes Environmental* WRF processing:

- WRF-ARW and WPS models Version 3.6
- Map projection in Lambert Conformal Conic (LCC)
- 35 ETA vertical pressure levels
- USGS 24 land use category data

In addition to the above options, a spin up time of 6 hours for each daily run was used. This means that every 24-hour run was composed of 30 hours where the 6 preceding hours are used for proper daily initialization. The initialization process discards these 6 initial hours which are not saved in the output as part of the meteorological modeling run.

3.5 WRF Output for AERMET

The US EPA Mesoscale Model Interface Program (MMIF) is a tool that retrieves data from NCAR's WRF-ARW model output in netCDF format and generates surface and upper air data files that can be used by the US EPA AERMET model (meteorological pre-processor for the US EPA AERMOD air dispersion model).

Data for use in AERMET/AERMOD are extracted from the innermost domain for the center of the grid cell closest to the user-defined latitude/longitude coordinate. Outer domains are used only to provide information to the innermost domain.

The latest version of the MMIF program is used. Table 3 contains a description of the files that were generated by the MMIF program where METxxxxxx is the order number, yyyy is the starting year, and zzzz is the ending year.

#	File Name	Description
1	METxxxxxx_AERMET_yyyyy-zzzz.IN1	AERMET Stage 1 Input File
2	METxxxxxx _AERMET_ yyyy-zzzz.IN2	AERMET Stage 2 Input File
3	METxxxxxx _AERMET_ yyyy-zzzz.IN3	AERMET Stage 3 Input File
4	METxxxxxx _AERMET_ yyyy-zzzz.DAT	Onsite Surface Met File
5	METxxxxxx _AERMET_ yyyy-zzzz.FSL	FSL Upper Air Met File

Table 3. Files Generated by MMIF

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com

3.6 WRF Output for CALMET

CALWRF is a tool that retrieves data from NCAR's WRF-ARW model output in netCDF format and creates a 3D.DAT file suitable for input into the CALMET model. The CALWRF output forms a grid covering the requested modeling domain with the requested resolution of either 4 km or 12 km. CALMET is a 3-D diagnostic meteorological preprocessor for CALPUFF model. CALPUFF is an advanced non-steady-state air quality dispersion model. CALWRF, CALMET, and CALPUFF are from Exponent. See below additional information on the CALWRF executable currently in use at Lakes Environmental:

- CALWRF.EXE, Version 2.0.1, Level 130418
- Generates 3D.DAT file in Version 2.1 format

The output from CALWRF is an ASCII file, known as the 3D.DAT format, which contains output variables for each hour, for each pressure level, and for each grid cell. Table 4 below describes the output variables.

#	Parameter	Units
1	Pressure	(mb)
2	Elevation	(m above mean sea level)
3	Temperature	(К)
4	Wind direction	(deg)
5	Wind speed	(m/s)
6	Vertical wind velocity	(m/s)
7	Relative humidity	(%)
8	Vapor mixing ratio	(g/kg)
9	Cloud mixing ratio	(g/kg)
10	Rain mixing ratio	(g/kg)

Table 4. Variables Available in 3D.DAT File

In addition, Table 5 describes the surface variables reported for each hour and each grid cell under the 3D.DAT file.

Table 5. Surface Variables Available in 3D.DAT File

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com

#	Parameter	Units
1	Sea level pressure	(hPa)
2	Total rainfall accumulated for the past hour	(cm)
3	Snow cover indicator	A
4	Short wave radiation at the surface	(W / m ²)
5	Long wave radiation at the top	(W / m²)
6	Air temperature at 2 m	(K)
7	Specific humidity at 2 m	(g/kg)
8	Wind direction of 10 m wind	(deg)
9	Wind speed of 10 m wind	(m/s)
10	Sea surface temperature	(K)

3.7 WRF Output for CALPUFF

The Mesoscale Model Interface Program (MMIF) converts prognostic meteorological model output fields to formats required for direct input into dispersion models. The utility was developed by ENVIRON International Corporation for the USEPA and is distributed via the USEPA's website. The utility reads data from NCAR's WRF-ARW model output in netCDF format and creates data in a user-specified format.

MMIF can be used to generate data for direct input to the CALPUFF model bypassing the CALMET model entirely. Output can be processed for use in either CALPUFF version 5.8.x or CALPUFF version 6 / 7. MMIF generates three sets of files:

- **Projection File:** This file contains information on the domain, projection, and met grid to be used in the CALPUFF project.
- Terrain Grid File: This is a gridded file containing terrain elevations (from mean sea level) to be used in the extraction of base elevations for sources and receptors in the CALPUFF project.
- CALPUFF-Ready Meteorological Data Files: The meteorological data to be input to CALPUFF.

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com

4 Additional Information

If you require any further information, please contact us at support@webLakes.com. When contacting us, please provide the met data order number.

For more information about the WRF meteorological model, please visit the site below:

http://www.wrf-model.org/index.php

Copyright © 2015 Lakes Environmental Software E-mail: info@webLakes.com Web: www.webLakes.com