AQUATIC ECOLOGICAL ASSESSMENT FOR THE PROPOSED ANGLO PLATINUM DER BROCHEN EXPANSION PROJECT, LIMPOPO PROVINCE

Prepared for:

SRK Consulting (Pty) Ltd

April 2018

Revised: August 2019

SECTION B: AQUATIC ECOLOGICAL ASSESSMENT

Prepared by: Report authors: Report Reviewer Report Reference: Conception Date: Submission Date: Revision Date: Second Revision: Scientific Aquatic Services Dionne Crafford Pr. Sci. Nat. Stephen van Staden Pr. Sci. Nat. SAS 217170 21 March 2018 13 April 2018 January 2019 August 2019

> Scientific Aquatic Services CC CC Reg No 2003/078943/23 Vat Reg. No. 4020235273 29 Arterial Road West Oriel (Bedfordview), 2007 Tel: 011 616 7893 Fax: 086 724 3132 E-mail: admin@sasenvgroup.co.za

MANAGEMENT SUMMARY

Background:

Scientific Aquatic Services (SAS) was appointed to conduct an aquatic ecological assessment as part of the Environmental Impact Assessment (EIA) and authorisation process for the proposed Anglo Platinum Der Brochen Expansion Project, Limpopo Province, hereafter referred to as the "focus area". The Anglo Platinum Der Brochen Mine is situated northeast of the R555 provincial road, and northwest of the R540 within the Limpopo Province approximately 24km south-west (40km by road) of the town of Steelpoort. Lydenburg is approximately 31km from the focus area in a southeast direction. The mine is located in the Greater Tubatse Local Municipality which forms part of the Greater Sekhukhune District Municipality.

The purpose of the ecological study, conducted in late February 2018 (with consideration of historical data from the existing biomonitoring program), was to define the Present Ecological State (PES) as well as the Ecological Importance and Sensitivity (EIS) of the Groot Dwars River and its unnamed tributary (known locally as the Mareesburg Spruit) associated with the Anglo Platinum Der Brochen Project.

An impact assessment on the aquatic resources of the proposed expansion was performed to determine the significance of the perceived impacts on the receiving environment. In addition, mitigatory measures were developed which aim to minimise the impacts, followed by an assessment of the significance of the impacts after mitigation, assuming that they are fully implemented. The results of this assessment are contained in Section C (*Freshwater Resource and Aquatic Ecological Assessment for the Proposed Anglo Platinum Der Brochen Project, Limpopo Province. Section C: Integrated Impact Assessment and Mitigation. (SAS, 2018)).*

In Government Gazette Number 39943 issued 22 April 2016, it is indicated that the Klein Dwars River at the confluence with the Groot Dwars River (quaternary catchment B41G), should be maintained in at Ecological Category D. For the overall Steelpoort River (quaternary catchment B41K), it is also stated that an Ecological Category D should be maintained. It is thus clear that catchment wide impacts have occurred, as the DWS RQIS database also indicate the PES to be in an Ecological Category D condition given the Resource Quality Objectives (RQO's) of the system. The system can also be seen as a "working river" where degradation is expected.

Methodology:

During this aquatic ecological assessment, results from the existing biomonitoring program (biomonitoring data for the period November 2001 to December 2017) were considered, as the assessment sites were also applicable to the proposed expansion.

Results:

The available biomonitoring data allowed adequate assessment of the PES and EIS of the system. Said results largely support the desktop study results, as will be discussed in more detail below.

Despite the current PES, the EIS is considered high to very high (Kleynhans 1999 and DWS RQIS database), with a very high EIS rating also achieved during the current assessment. The Groot Dwars River is considered to be unique on a national scale based on biodiversity, with biota and habitat sensitive to flow and habitat modifications.

Result summary:

The results of the aquatic ecological assessment based on biomonitoring program data, as well as relevant desktop data, is provided below:

Biomonitoring assessment results summary:							
Criteria	Ecological Category classification achieved for the following sites:						
	GD2	GD3	GD4	GD5	Overall for the Groot Dwars River	T1 unnamed tributary on Mareesburg farm*	
SASS5	С	E/F	D	E/F	D	E/F	
MIRAI	С	D	D	D	D	D	
Instream IHI	В	В	B/C	В	В	В	
Riparian IHI	В	С	С	С	C	С	
FRAI	-	-	•	-	D	NA	
VEGRAI	-	•	•	•	С		
Ecological Integration Tool result				C			
Ecological Importance and Sensitivity Assessment				High			

* The tributary will be referred to as "Mareesburg Spruit" for the purpose of this report

The results for relevant desktop data, is provided below:

Desktop assessment result summary:			
Desktop EIS (Kleynhans 1999, DWS RQIS)	High to Very High		
Desktop PEMC (Kleynhans 1999)	В		
Desktop DEMC (Kleynhans 1999)	В		
Desktop PES (DWS RQIS)	D		
Desktop REC (DWS 2016)	C/D		

NA = Not applicable; EIS = Ecological Importance and Sensitivity; PEMC = Present Ecological Management Class; DEMC = Desired Ecological Management Class; PES = Present Ecological State; confirmed in database that assessments were performed by expert assessors; EI = Ecological Importance; ES = Ecological Sensitivity; EC = Ecological Category; default based on median PES and highest of EI or ES means; REC = Recommended Ecological Category.

Water Quality and Toxicological Hazard Considerations:

Groot Dwars River: As also defined in the existing biomonitoring program, site GD5 is used to indicate the level of aquatic ecological integrity after the cumulative effects, if any, of the existing Der Brochen project on the Groot Dwars River. Monitoring results (temporal and spatial comparisons of percentage change in values) at this site indicate a potential impact on water quality [increased Electrical Conductivity (EC) in a downstream direction] from existing mining activities. Specifically, potential impact from the existing Mototolo concentrator on salt load (compounded by potential impacts from upstream pollution sources and geological variation) was noted at site GD4. Data suggest that increased EC will also be a likely compounding risk with reference to the planned expansion activities. Process water systems associated with the existing Mototolo concentrator, based on available historical data, poses a significant toxicological hazard to the receiving environment. Results varied seasonally, but risk ranged between a no acute hazard (Class 1) to a high acute hazard (Class 4). Over the same period the conditions in the Groot Dwars River posed a slight acute (Class 2) to acute (Class 3) hazard. Although already impacted, any potential spills or overflow from dirty water areas are likely to have negative impact in terms of both water quality (notably elevated EC), as well as a toxicological hazard impact on aquatic biota in the Groot Dwars River. It is anticipated that process water systems associated with the planned concentrator, as well as any other dirty water areas associated with the proposed mining operation expansion, will pose a similar threat (i.e. potential cumulative impact).

Mareesburg Spruit: Slightly elevated EC was observed at site T1 (Mareesburg Spruit subjected to potential cumulative impacts from surrounding agricultural and mining activities, confluences with the

Dwars River just above the GD5 site), which could potentially also contribute to salt loading of the Groot Dwars River at site GD5. As was also stated for the Groot Dwars River above, the proposed expansion infrastructure will likely contribute to a cumulative salt loading risk in the system. **Aquatic Biota Considerations:**

Available biomonitoring data indicate that the macro-invertebrate community diversity and sensitivity decreases in a downstream direction on the Groot Dwars River. The observed decrease is likely related to slight variation in water quality (notably EC) to which the existing Der Brochen operations, Mototolo Concentrator, as well as unknown point and diffuse sources of pollution. The proposed expansion will result in cumulative risk with reference to water quality impact (salt loading and toxicological hazard described above) and habitat impacts (risk of sedimentation in case of spillages described above), with potential direct and indirect negative impact on aquatic communities.

PES/EIS status:

The Ecostatus Categories for the Index of Habitat Integrity (IHI) and the Macro-Invertebrate Response Assessment Index (MIRAI) classifications for all of the Groot Dwars River sites are congruent with the Resource Quality Objectives (RQO's) of the Olifants River catchment (Ecological Category C/D, DWS, 2016). As mentioned previously, this is a "working river" and hence existing impact can be anticipated.

Most important risks identified based on aquatic ecological assessment:

Risk of impact on the Groot Dwars River thus pertains predominantly to potential spillages or overflow (from process water systems and other dirty water areas), leaching (from waste rock dumps or mining shafts), decant (from shafts following closure) and run-off (from disturbed surfaces, hard surfaces and other proposed mining infrastructure), depending on phase of proposed development. Potential impact pertains to changes in water quality, as well as impact from sedimentation and settling of fine tailings. With reference to water quality, the specific risk of elevated EC based on historical data has been highlighted, as has toxicological hazards posed by dirty water systems. With reference to sedimentation and tailing deposits, potential direct and indirect effects are applicable.

Aquatic ecological assessment synopsis:

Existing biomonitoring data shows that the existing mining infrastructure do have an impact on the system. Should the planned expansion proceed, addition of similar infrastructure will likely lead to similar impacts (or risks thereof), potentially resulting in a cumulative effect. Should the expansion project proceed, very good mitigation is required to avoid and minimise potential impacts on the receiving environment, in line with the requirements of the mitigation hierarchy (prevention, reduction, remediation and compensation) as advocated by the Department of Environmental Affairs.

Impact Assessment:

Following the assessment of the freshwater resources, an impact assessment was undertaken in order to ascertain the significance of perceived impacts associated with the proposed activities on the receiving environment. The results of this assessment are contained in Section C (*Freshwater Resource and Aquatic Ecological Assessment for the Proposed Anglo Platinum Der Brochen Project, Limpopo Province. Section C: Integrated Impact Assessment and Mitigation.SAS, 2018*).

Based on the findings of the ecological assessment and results of the impact assessment, it is the opinion of the ecologist that the proposed expansion project carries the potential to pose a significant risk to the Groot Dwars River, pertaining mostly water quality (notably elevated EC) and sedimentation impacts on both aquatic habitat and biota. Risks pertain mostly to altered flow patterns with associated run-off, erosion and sedimentation as well as spillage/leaching/decant. However, should careful planning of the positioning and layout of the proposed infrastructure take into account the locations of the drainage lines, with appropriate measures to prevent or manage spillage/leaching/decant and run-off, impact significance can be greatly reduced. Furthermore, the adherence to cogent, well-conceived mitigation measures as well as general good construction practice will aid in reducing the impact significance to acceptable levels.

However, it should be noted that the significance of some risks, such as possible decant from the open pit and shaft, leaching from stockpiles and loss of catchment yield could not be accurately assessed since the relevant specialist studies had not been completed at the time of this assessment.

Taking the above into account, it is therefore the opinion of the specialist that from an aquatic ecological perspective, the proposed expansion project be carefully considered, and that preferably, further development and refinement of the site layout plans takes place before the project is authorised.

DOCUMENT GUIDE

The table below provides a guide of the contents of this report in line with the requirements for specialist studies as per Appendix 6 of the EIA regulations, as amended in 2017 (GN326).

No.	Requirement	Section in report
a)	Details of -	-
(i)	The specialist who prepared the report	Appendix F
(ii)	The expertise of that specialist to compile a specialist report including a curriculum vitae	Appendix F
b)	A declaration that the specialist is independent	Appendix F
c)	An indication of the scope of, and the purpose for which, the report was prepared	Section 1.2
cA)	An indication of the quality and age of base data used for the specialist report	Section 2.2 and 3
cB)	A description of existing impacts on the site, cumulative impacts of the proposed	Section 2.2, 4 and 5
	development and levels of acceptable change	
d)	The duration, date and season of the site investigation and the relevance of the season	Section 1.2, 4 and 5
-	to the outcome of the assessment	
e)	A description of the methodology adopted in preparing the report or carrying out the	Section 3 and Appendix C
	specialised process inclusive of equipment and modelling used	
f)	Details of an assessment of the specific identified sensitivity of the site related to the	Section 4 and 5
	proposed activity or activities and its associated structures and infrastructure, inclusive	
	of a site plan identifying site alternatives	
g)	An identification of any areas to be avoided, including buffers	Section A (Freshwater
		Resource Ecological
		Assessment)
h)	A map superimposing the activity including the associated structure and infrastructure	Section A (Freshwater
	on the environmental sensitivities of the site including areas to be avoided, including	Resource Ecological
	buffers	Assessment)
i)	A description of any assumption made and any uncertainties or gaps in knowledge	Section 1.3
j)	A description the findings and potential implication\s of such findings on the impact of	Section 4 and 5, Section C
	the proposed activity, including identified alternatives on the environment or activities	
k)	Any mitigation measures for inclusion in the EMPr	Section C
l)	Any conditions for inclusion in the environmental authorisation	Section C
m)	Any monitoring requirements for inclusion in the EMPr or environmental authorisation	Section C
n)	A reasoned opinion -	
(i)	As to whether the proposed activity, activities or portions thereof should be authorised	Section 7, Section C
(iA)	Regarding the acceptability of the proposed activity or activities	Section 7, Section C
(ii)	If the opinion is that the proposed activity, activities or portions thereof should be	Section 7, Section C
	authorised, any avoidance, management and mitigation measures that should be	
	included in the EMPr, and where applicable, the closure plan	
o)	A description of any consultation process that was undertaken during the course of	N/A
	preparing the specialist report	
p)	A summary and copies of any comments received during any consultation process and	N/A
	where applicable all responses thereto; and	
q)	Any other information requested by the competent authority	N/A

TABLE OF CONTENTS

MAN	AGEMENT SUMMARY	ii
DOC	UMENT GUIDE	. vi
TABI	LE OF CONTENTS	vii
LIST	OF FIGURES	viii
LIST	OF TABLES	viii
1.	INTRODUCTION	1
1.1	Background Information	1
1.2	Scope of Work	6
1.3	Assumptions and Limitations	10
1.4	Legislative Considerations	10
2.	AQUATIC ECOLOGICAL DESCRIPTION (DESKTOP ANALYSIS)	11
2.1	Ecoregions	11
2.2	Ecostatus	12
2.2.1	Historical Quaternary Catchment Information from Kleynhans, 1999	12
2.2.2	Department of Water and Sanitation (DWS) Resource Quality Information Services	
	(RQIS) PES/EIS database	14
2.2.3	Classes and resource quality objectives of water resources for catchments of the	
	Olifants River in terms of Section 13(1) (a) and (b) of the National Water Act (Act	
	no.36 of 1998)	21
3.	METHOD OF INVESTIGATION	24
4.	RESULTS AND INTERPRETATION	25
5.	ECOLOGICAL IMPORTANCE AND SENSITIVITY ASSESSMENT	40
6.	IMPACT ASSESSMENT	41
7.	CONCLUSION	41
8.	RECOMMENDATIONS	45
9.	REFERENCES	46
APPI	ENDIX A - Terms of Use and Indemnity	48
APPI	ENDIX B - Legislation	49
APPI	ENDIX C - Method of Assessment	51
APPI	ENDIX D - Results of Field Investigation (Scoresheets)	56
APPI	ENDIX E - Specialist information	74

LIST OF FIGURES

Figure 1:	A digital satellite image depicting the location of the proposed Der Brochen	4
Figure 2:	Adigital satellite image depicting the location of the proposed Der Brochen	4
	mine expansion and the biomonitoring points in relation to the surrounding	5
Figure 3:	Biomonitoring sites presented in relation to the Aquatic Ecoregion and relevant	5
	quaternary catchments, including the Dwars River Catchment	9
Figure 4:	Ecological Categories (EC) eco-status A to F continuum approach employed	. 12
Figure 5:	Relevant Sub-Quaternary Catchment Reaches of the Groot Dwars River and associated Mareesburg Spruit in the vicinity of the Der Brochen Investigation	
	Area	.20
Figure 6:	General view of the GD2 site at the time of the last assessment (December	~~
F '	2017).	.26
Figure 7:	Site-specific temporal water quality variation at site GD2	.27
Figure 8:	Site-specific temporal macro-invertebrate community integrity variation at site	27
Eiguro 0:	GDZ	. 27
Figure 9.	2017)	28
Figure 10:	Site-specific temporal water quality variation at site GD3.	.29
Figure 11:	Site-specific temporal macro-invertebrate community integrity variation at site	0
	GD3	.29
Figure 12:	General view of the GD4 site at the time of the last assessment (December 2017).	.30
Figure 13:	Site-specific temporal water quality variation at site GD4	.31
Figure 14:	Site-specific temporal macro-invertebrate community integrity variation at site	
U	GD4	.31
Figure 15:	General view of the GD5 site at the time of the last assessment (December	
	2017)	. 32
Figure 16:	Site-specific temporal water quality variation at site GD5	. 33
Figure 17:	Site-specific temporal macro-invertebrate community integrity variation at site	
	GD5	. 33
Figure 18:	Spatial trends in water quality between sites GD2 up to GD5.	. 34
Figure 19:	Spatial trends in SASS5, ASPT and IHAS scores between sites GD2 up to	<u> </u>
- : 00	GD5	.35
Figure 20:	General view of the 11 site at the time of the last assessment (December 2017)	36
Figure 21.	Site-specific temporal water quality variation at site T1	.37
Figure 22	Site-specific temporal macro-invertebrate community integrity variation at site	
90.0 -2.	T1	.37

LIST OF TABLES

Location of the biomonitoring points with co-ordinates and descriptions of the	
site in relation to surrounding features.	7
Key Attributes of the Eastern Bankenveld Ecoregion	.11
Classification of river health assessment classes in line with the RHP	.12
Quaternary catchment information	.13
Fish species previously collected from or expected in the various SQR monitoring points associated with the focus area	.14
	Location of the biomonitoring points with co-ordinates and descriptions of the site in relation to surrounding features. Key Attributes of the Eastern Bankenveld Ecoregion Classification of river health assessment classes in line with the RHP Quaternary catchment information. Fish species previously collected from or expected in the various SQR monitoring points associated with the focus area.

Table 6:	Invertebrates previously collected from or expected at the various SQR monitoring points associated with the various assessment areas	5
Table 7:	Summary of the ecological status of the sub-quaternary catchment (SQ) reaches associated with the focus area based on the DWS RQS PES/EIS database	17
Table 8:	Intolerance ratings as well as FROC (anticipated by Ecologist as none is provided for catchment B41G in Kleynhans <i>et al.</i> , 2007) scores for naturally occurring fish species expected to occur in the Groot Dwars River and surrounding area [Department of Water and Sanitation (DWS) Resource Quality Services (RQS) PES/EIS database, sub-quaternary catchment (SQ) reach B41G-00674 (Groot Dwars River)]	8
Table 9:	Water Resource Classes per Integrated Unit of Analysis (IUA) and Ecological Categories per Biophysical Node	22
Table 10:	Resource Quality Objectives (RQO) for River water quality in the Olifants catchment	22
Table 11:	Resource Quality Objectives for River Instream Habitat and Biota in the Olifants catchment	23
Table 12:	Resource Quality Objectives for River Riparian Zone Habitat in Olifants catchment	23
Table 13:	Results of the assessment at site GD2 (Groot Dwars River downstream of the Booysendal boundary fence). 2	26
Table 14:	Temporal variations observed at site GD2 since the baseline assessment in July 2009.	27
Table 15:	Results of the assessment at site GD3 (Approximately 100 m downstream of the existing low water crossing of the Groot Dwars River, upstream of the Helena/der Brochen boundary fence)	28
Table 16:	Temporal variations observed at site GD3 since the baseline assessment in April 20072	29
Table 17:	Results of the assessment at site GD4 (Groot Dwars River downstream of Mototolo concentrator but upstream from other mining activities)	30
Table 19	April 2007	31
	farm downstream from tributary confluence and also downstream from other mining activities)	32
Table 20:	Temporal variations observed at site GD5 since the baseline assessment in April 2007	33
Table 21: Table 22:	Spatial trends in water quality at sites GD2 to GD5 (Groot Dwars River)	34 35
Table 23:	Results of the assessment at site T1 (Mareesburg Spruit that confluences with the Groot Dwars River just above GD5).	36
Table 24:	Temporal variations observed at site T1 since the baseline assessment in July 2010.	37
Table 25:	Riparian Vegetation Response Assessment Index (VEGRAI) and Fish Response Assessment Index (FRAI) results	38
Table 26:	Summary data table for assessment of the Groot Dwars River with available ecostatus data comparisons	39
Table 27:	Summary data table for assessment of the Mareesburg Spruit that confluences with the Groot Dwars River just above GD5	39
Table 28:	Results of the EIS assessment for the Groot Dwars River within the study area.	1 0

ACRONYMS AND GLOSSARY OF TERMS

Abbreviations and Full Form		Definition (Where Applicable)		
Acronyms				
ASPT	Average Score Per Taxon	The average sensitivity of the aquatic community obtained by determining the sum of the sensitivity scores for each aquatic macro-invertebrate family observed and then dividing by the number of families present.		
DEEEP	Direct Estimation of Ecological Effect Potential	DEEEP proposes a battery of tests to directly assess effluent oxygen demand, lethal (acute) and sublethal (chronic) toxicity, bioaccumulation, mutagenicity and persistence potential of effluents, using test organisms from a range of trophic levels.		
DO	Dissolved Oxygen	Dissolved Oxygen is the amount of oxygen that is present in the water. It is measured in milligrams per litre (mg/L).		
% DO sat	Dissolved Oxygen Saturation	In aquatic environments, oxygen saturation is a ratio of the concentration of dissolved oxygen in the water to the maximum amount of oxygen that will dissolve in the water at that temperature and pressure under stable equilibrium.		
DWAF	Department of Water Affairs	and Forestry		
DWS	Department of Water and Sa	anitation (formerly known as DWAF, see above)		
DMS	Dense Medium Separation	<u></u>		
EC	Electrical Conductivity	Electrical conductivity (EC) is a measure of the ability of water to conduct an electrical current. This ability is a result of the presence in water of ions such as carbonate, bicarbonate, chloride, sulphate, nitrate, sodium, potassium, calcium and magnesium, all of which carry an electrical charge.		
EIS	Ecological Importance and Sensitivity	Ecological importance refers to the diversity, rarity or uniqueness of the habitats and biota. Ecological sensitivity refers to the ability of the ecosystem to tolerate disturbances and to recover from certain impacts.		
EMP	Environmental Management Plan	An EMP is a site-specific plan developed to ensure that all necessary measures are identified and implemented in order to protect the environment and comply with environmental legislation.		
EWR	Ecological Water Requirements	The flow patterns (magnitude, timing and duration) and water quality needed to maintain a riverine ecosystem in a particular condition. This term is used to refer to both the quantity and quality components.		
IHAS	Invertebrate Habitat Assessment System	An assessment index to determine the suitability of the habitat at any assessment point for colonisation by aquatic macro- invertebrates.		
IHIA	Intermediate Habitat Integrity Assessment	The habitat integrity assessment is based on two perspectives of the river, the riparian zone and the instream channel. Assessments are made separately for both aspects, but data for the riparian zone are primarily interpreted in terms of the potential impact on the instream component.		
MIRAI	Macro-invertebrate Response Assessment Index	MIRAI integrates the ecological requirements of the invertebrate taxa in a community or assemblage to their response to modified habitat conditions.		
NA	Not Applicable			
NEMA	National Environmental Management Act			
NWA	National Water Act			

ACRONYMS AND GLOSSARY OF TERMS (CONTINUED)

Abbreviations and	Full Form	Definition (Where Applicable)
Acronyms		
OREWRA	Olifants River Ecological Water Requirement Assessment	A comprehensive determination of the Reserve was conducted with the aim of quantifying the environmental requirements of the resource in order to protect the aquatic ecosystem and secure ecologically sustainable development and use of the resource. The outcome of this determination was recommended flow and water quality objectives that should be achieved in order that the aquatic ecosystem can be afforded the level of protection as required by the Ecological Class.
PES	Present Ecological State	The current state or condition of a water resource in terms of its biophysical components (drivers) such as hydrology, geomorphology and water quality and biological responses viz. fish, invertebrates, riparian vegetation). The degree to which ecological conditions of an area have been modified from natural (reference) conditions.
Ref	Reference	
RQIS	Resource Quality Information Services	RQIS provides national water resource managers with aquatic resource data, technical information, guidelines and procedures that support the strategic and operational requirements for assessment and protection of water resource quality.
RQOs	Resource Quality Objectives	Classes and resource quality objectives of water resources for the Olifants catchment from Government Gazette number 39943, 22 April 2016, Department of Water and Sanitation (DWS 2016).
SA RHP	South African River Health Programme	The RHP serves as a source of information regarding the overall ecological status of river ecosystems in South Africa. For this reason, the RHP primarily makes use of in-stream and riparian biological communities (e.g. fish, invertebrates, vegetation) to characterise the response of the aquatic environment to multiple disturbances.
SASS5	South African Scoring System	An index to determine the integrity of the aquatic macro- invertebrate community at any given assessment point.
SQR	Sub-quaternary Reach	A finer subdivision of the quaternary catchments (the catchment areas of tributaries of main stem rivers in quaternary catchments).
TWQR	Target Water Quality Requirement	*Guidelines set by the South African Department of Water and Sanitation (DWS), formerly the Department of Water Affairs and Forestry (DWAF), for various physico-chemical and biological parameters for various uses as well as ecosystem functioning.
Var	Variation	
WET	Whole Effluent Toxicity	Whole Effluent Toxicity refers to the aggregate toxic effect to aquatic organisms from all pollutants contained in a facility's wastewater (effluent).
WMS	Water Management System	WMS is a suite of computer programmes developed for the Department of Water and Sanitation to provide information for water resource monitoring and management in South Africa.
WUL	Water Use License	The National Water Act (Act 36 of 1998) gives the Department of Water and Sanitation the tools to gather the information that we need for the optimal management of our water resources. The registration of water use is one of these tools.

* South African water quality guidelines volume 7, Aquatic ecosystems (DWS 1996): This reference provides percentage change guidelines as follows:

 Electrical conductivity (EC)/Total Dissolved Solids (TDS) concentrations should not be changed by > 15 % from the normal cycles of the water body under unimpacted conditions at any time of the year, and the amplitude and frequency of natural cycles in EC/TDS concentrations should not be changed;

- **pH values** should not be allowed to vary from the range of the background pH values for a specific site and time of day, by > 0.5 of a pH unit, or by > 5 %, and should be assessed by whichever estimate is the more conservative.
- **Dissolved Oxygen (DO)** concentration should be 80% to 120% of saturation. In addition, for the purposes of this report, any spatial or temporal change exceeding 15% will be considered significant.

Note that EC and pH comparisons refer to temporal comparisons. However, as no guidelines are available for spatial comparisons, the percentage change recommendations will also be applied to spatial comparisons. For the purpose of this report, a temporal or spatial change of 15% will be considered significant with reference to DO.

Two other water quality related guideline documents consulted during the aquatic assessments were:

- Olifants River Ecological Water Requirements Assessment (OREWRA) (Palmer and Rossouw, 2001) for the Lower Olifants, Steelpoort River. Water quality parameter values were compared to guideline values from this reference, denoted as OREWRA (2001) in discussions that follow;
- Classes and resource quality objectives of water resources for the Olifants catchment from Government Gazette number 39943, 22 April 2016, Department of Water and Sanitation (DWS 2016). This publication provided updated classes and resource quality objectives of water resources for the Olifants River catchment. However, it does not specify water quality ranges for oxygen concentration, pH value and electrical conductivity concentration for quaternary catchment B41G (Upper reaches of Groot Dwars River or the Klein Dwars confluence with the Groot Dwars) or B41J (Steelpoort River, EWR Site 9). Details on ecological category, water quality in terms of nutrients and toxins, instream habitat and biota and riparian zone habitat are included in Section 2 of this report, and was used to aid in interpretation of biological monitoring data.

1. INTRODUCTION

1.1 Background Information

Scientific Aquatic Services (SAS) was appointed to conduct a freshwater resource assessment as part of the amendment to the Anglo American Platinum (AAP)-Rustenburg Platinum Mines Limited (RPM) Der Brochen Mine's approved EMPr and associated Environmental Authorisation (EA), including an update of the existing Water Use Licence (WUL) to include various new activities. The proposed developments are summarised below and are collectively henceforth referred to as the 'focus area' (Figures 1 and 2). The Anglo Platinum Der Brochen Project is situated northeast of the R555 provincial road, and northwest of the R540, and approximately 24km south-west (40km by road) of the town of Steelpoort. Lydenburg is approximately 31km from the focus area in a southeast direction. The Anglo Platinum Der Brochen Mine is located in the Greater Tubatse Local Municipality which forms part of the Greater Sekhukhune District Municipality.

Project Description

The focus area comprises the following additional mining-related infrastructure as part of the mine's development strategy (as per the Memorandum for the Der Brochen Amendment Project developed and provided by SRK Consulting, 23 July 2019, Project Reference 533247):

- One new decline shaft (South Decline Shaft) with associated infrastructure including water management infrastructure;
- The previously approved North Opencast Pit area with associated infrastructure as previously approved in 2015, i.e. water management infrastructure and waste rock stockpiles;
- Three up-cast ventilation shafts required for the underground workings associated with the South Decline Shaft;
- A Dense Medium Separation (DMS) Plant to be located within the existing footprint area of the Mototolo Concentrator area;
- > A DMS Stockpile with associated water management infrastructure;
- The conversion of the existing Mototolo chrome plant from a final tailings' arrangement to an inter-stage arrangement;
- Additional Run of Mine stockpiles and associated silos;
- Change houses and office complex to be located at the proposed South Decline Shaft area;

- > An explosive destruction bay area to be located near the proposed South decline shaft;
- > Staff accommodation facilities to be located near the Der Brochen Dam; and
- > Additional linear infrastructure, i.e.:
 - **Two conveyor systems.** One conveyor belt system will be constructed to connect the proposed South Decline Shaft with the proposed DMS Plant that will be located in the existing footprint area of the Mototolo Concentrator Plant, for the purpose of transporting ore from the South Decline Shaft to the plant area. Another conveyor belt system will be required to transport DMS material from the proposed DMS Plant to the proposed DMS Stockpile area. It is currently anticipated that the DMS conveyor system will run along the existing Mareesburg tailings pipeline system.
 - Access and haul roads. New access roads to the proposed ventilation shafts will be required for maintenance purposes. Certain existing roads will also be required to be upgraded to provide sufficient access roads to the project related infrastructure such as the North Opencast Pit area, the South Decline Shaft and offices. The mine is also considering including a haul road within the proposed corridor associated with the ore conveyor belt system to transport ore from the proposed South Decline Shaft to the Mototolo Concentrator Plant area as an interim measure, whilst the conveyor belt system is being constructed.

It should be noted that although the scope of this study does not include the previously authorized North Open Pit and associated infrastructure, where necessary, reference is made to the potential cumulative impact that the proposed North Open Pit may have on freshwater resources identified within the focus area.

The focus area is within an undisturbed area which has an endemic floral and faunal community, and is therefore of considerable ecological importance (SRK, 2002). The Der Brochen mine is situated in the catchment of the Groot Dwars River (quaternary catchment B41G). This river confluences with the Klein Dwars River before it enters the Steelpoort River. The primary catchment of the system is the Olifants River system. In this area, the water resources are used for mining purposes, however, some subsistence fishing as well as domestic and agricultural use of water is likely to occur downstream of the project area.

Due to the "Good to Excellent" biotic conditions historically observed in the area, this region of the Steelpoort catchment has been regarded as having a high ecological importance. However, in Government Gazette Number 39943 issued 22 April 2016, it is indicated that the Klein Dwars River at the confluence with the Groot Dwars River (quaternary catchment B41G), should be maintained in at Ecological Category D. For the upper reaches of the Dwars River, prior to mining impacts (also quaternary catchment B41G), it is stated that an Ecological

Category C should be maintained. It is thus clear that catchment wide impact has occurred in this quaternary catchment.

SAS currently manages an ecological biomonitoring program pertaining to the existing Der Brochen activities. Historic data from this program were also used to help define the ecological state of aquatic resource characteristics, including defining the Present Ecological State (PES) and Ecological Integrity and Sensitivity (EIS) of the section of the Groot Dwars River associated with the mine expansion.

A pre-defined impact assessment method supplied by the Environmental Assessment Practitioner (EAP) was applied to determine the significance of the perceived impacts associated with the mining expansion activities. In addition, mitigatory measures were developed which aim to minimise the impacts, followed by an assessment of the significance of the impacts after mitigation, assuming that they are fully implemented. These results are contained in Section C (*Freshwater Resource and Aquatic Ecological Assessment for the Proposed Anglo Platinum Der Brochen Project, Limpopo Province. Section C: Integrated Impact Assessment and Mitigation.SAS, 2018*). Please refer to Section 1.2 for the detailed scope of work encompassed by this study.

This study aims to provide detailed information to guide the proposed project activities in the vicinity of the aquatic resource (Groot Dwars River), to ensure the ongoing functioning of the ecosystems, such that local and regional conservation requirements and the provision of ecological services in the local area are supported while considering the need for sustainable economic development. This report, after consideration of the above, must guide the relevant authorities, by means of a reasoned opinion and recommendations, as to the viability of the proposed mining activities from an aquatic resource management perspective.

Figure 1: A digital satellite image depicting the location of the proposed Der Brochen mine expansion in relation to the greater MRA.

Figure 2: A digital satellite image depicting the location of the proposed Der Brochen mine expansion and the biomonitoring points in relation to the surrounding area.

1.2 Scope of Work

Specific outcomes in terms of the assessment of the aquatic resources within the Investigation Area were to:

- To define the Present Ecological State (PES) of the aquatic resources within the study areas;
- To define the Ecological Importance and Sensitivity (EIS) of the aquatic resources within the study area;
- > To collect baseline data and present recommendations with the intention to:
 - Maintain the PES of the system in support of the EIS of the aquatic ecosystem;
 - Ensure that connectivity of the aquatic resources is maintained between the areas upstream and downstream of the proposed development areas;
 - Ensure that no further incision and erosion of the river system takes place as a result of the proposed development;
 - Ensure that no significant persistent impact on water quality will take place;
- To determine the impact that the proposed project might have on the aquatic ecology of the area as a result of the proposed mining activities, and to aim to quantify the significance thereof; and
- To present management and mitigation measures which should be implemented by the proponent to assist in minimising the impact on the receiving environment.

This report serves to report on an assessment of the PES and EIS of, as well as potential risk to, the Groot Dwars River and associated Mareesburg Spruit, with consideration of data obtained from the existing biomonitoring and toxicity testing program. Period of biomonitoring used for this purpose ranged from November 2001 to December 2017. Five biomonitoring sites pertaining to the Groot Dwars River have historically been identified for assessment. These same sites were employed for the purpose of this study, as they will also be applicable to the proposed expansion. The locations of the respective sites are presented in Figures 2 and 3. The upstream site (GD2) is used as a spatial reference site to indicate whether any change in aquatic ecological integrity takes place over the existing mine property. This upstream point is important, since changes which have already taken place in the system due to anthropogenic activities, prior to the effects of the existing Der Brochen project, can then be accounted for. Site GD3 is located upstream of the Helena/Der Brochen boundary fence. Site GD4 serves as an intermediate point which will aid in identifying impacts occurring within existing the mining area. This point also acts as a spatial reference point to which data from site GD5 can be compared. This will allow existing impacts in the lower mining sections to be quantified and will allow the existing impacts of the Mototolo Tailings Dam on the Groot Dwars

River to be determined. The downstream site (GD5) is used to indicate the level of aquatic ecological integrity after the existing cumulative effects, if any, of the Der Brochen project on the Groot Dwars River. Identifying impact of existing infrastructure will assist to identify potential risks and cumulative impacts that may be posed by addition of similar new infrastructure, should the proposed expansion proceed.

Site T1 is located on the Mareesburg Spruit which confluences with the Dwars River just above the GD5 site. In order to ensure that results are temporally comparable, the same sampling locations were used as those which were used during scheduled biomonitoring assessments of the existing mining operation.

Table 1: Location of the biomonitoring points with co-ordinates and descriptions of the site in relation to surrounding features.

SITE	LATITUDE	LONGITUDE	DESCRIPTION
GD2	25° 05" 12.5 S	30° 07" 29.9 E	Located on the Groot Dwars River downstream of the Booysendal boundary fence. Used as a spatial reference site to indicate whether any change in aquatic ecological integrity takes place over the mine property
GD3	25° 02" 26.6 S	30° 07" 12.8 E	Located approximately 100 meters downstream of the existing low water crossing of the Groot Dwars River, which is upstream of the Helena/Der Brochen boundary fence.
GD4	25° 00" 21.6 S	30° 07" 28.3 E	Groot Dwars River downstream of the Mototolo concentrator but upstream of the Helena mine. Located at a point where the road along the east bank of the river is near to the river downstream of a small waterfall. Assessment of this site will allow impacts in the lower mining sections to be quantified and will allow the impacts of the Mototolo Tailings Dam on the Groot Dwars River to be determined.
GD5	24° 59" 26.3 S	30° 08" 42.5 E	Located within the Xstrata game farm grounds. The point is approximately 150 meters downstream of the confluence of the Mareesburg Spruit with the Groot Dwars River. The site (GD5) is used to indicate the level of aquatic ecological integrity after the cumulative effects, if any, of the Der Brochen project on the Groot Dwars River.
T1	24° 59" 35.3 S	30° 08" 37.7 E	Located on the Mareesburg Spruit which confluences with the Dwars River just above the GD5 site.

This report serves to report on an assessment of the PES and EIS of, as well as potential risk to, the Groot Dwars River and associated Mareesburg Spruit, with consideration of data obtained from the existing biomonitoring program (period of biomonitoring from November 2001 to December 2017, with the exception of the assessment of the riparian vegetation using the (VEGRAI Ecostatus tool) applied in February 2018). Factors investigated included the visual conditions of the site, together with an assessment of potential impacts on the stream at each point. General habitat integrity was assessed using the Index of Habitat Integrity (IHI) system.

Habitat suitability for aquatic macro-invertebrates was determined using the Invertebrate Habitat Assessment System (IHAS) method. The integrity of the aquatic macro-invertebrate

communities was assessed using the South African Scoring System version 5 (SASS5) and the Macro-Invertebrate Response Assessment Index (MIRAI). The integrity of the fish community was assessed using the Fish Response Assessment Index (FRAI), whilst that of riparian vegetation was assessed using Riparian Vegetation Response Assessment Index (VEGRAI).

Section 3 and Appendix C describes the methods used to assess the various aspects of the ecological integrity of the system, and the results obtained are discussed in Section 4. In Section 5 ecological importance and sensitivity are assessed. In Section 7 a synthesis of the findings is made.

Figure 3: Biomonitoring sites presented in relation to the Aquatic Ecoregion and relevant quaternary catchments, including the Dwars River Catchment.

1.3 Assumptions and Limitations

The following points serve to indicate the assumptions and limitations with regard to the aquatic assessment:

- Area examined: The determination of the aquatic resource boundaries and the assessment thereof, is confined to the focus area. The general surroundings were, however, considered in the desktop assessment of the focus area as well as general knowledge of the consultants on the Greater Dwars River system;
- Reference conditions are unknown: Considering existing mining activities in the larger catchment, the composition of aquatic biota in the focus area, prior to disturbance, is largely unknown. For this reason, reference conditions are partly hypothetical, and are based on historical biomonitoring data in the area (dating back to April 2007), professional judgement and inferred from desktop data available such as the Department of Water and Sanitation (DWS) Resource Quality Information Services (RQIS) PES/EIS database, as discussed in Section 2. These sources indicate that the system is highly sensitive with a very high ecological importance and ecological sensitivity rating;
- Integrated Ecological Impact Assessment: The results of the integrated impact assessment undertaken for the aquatic and freshwater (riparian) resources are presented in Section C¹. It is important to note however that at the time of the assessment, detailed layouts of some infrastructure areas (e.g. the auxiliary infrastructure associated with the South Decline Shaft) had not been finalized. The impact assessment is therefore based on general investigation areas provided by the proponent and the impact significance of some perceived impacts could change. The impact assessment was therefore based on a "worst case scenario".

1.4 Legislative Considerations

The following legislative requirements were taken into consideration during the assessment. A detailed description of these legislative requirements is presented in Appendix B:

- > Mineral and Petroleum Resources Development Act, 2002 (Act 28 of 2002) (MPRDA)
- > National Environmental Management Act, 1998 (Act 107 of 1998) (NEMA)
- National Water Act, 1998 (Act 36 of 1998) (NWA);

¹ Integrated Impact Assessment for the Der Brochen 2018. Prepared by Scientific Aquatic Services for SRK Consulting (Pty) Ltd. Specialist report. Unpublished.

- General Notice (GN) 509 as published in the Government Gazette 40229 of 2016 as it relates to the NWA, 1998 (Act 36 of 1998); and
- Government Notice 704 as published in the Government Gazette 20119 of 1999 as it relates to the NWA, 1998 (Act 36 of 1998) regarding the use of water for mining and related activities aimed at the protection of water resources.

2. AQUATIC ECOLOGICAL DESCRIPTION (DESKTOP ANALYSIS)

2.1 Ecoregions

When assessing the ecology of any area (aquatic or terrestrial), it is important to know which ecoregion the study areas are located within. This knowledge allows improved interpretation of data, since reference information and representative species lists are often available on this level of assessment, which aids in guiding the assessment. With reference to expected macro-invertebrate and fish taxa, refer to Section 2.2.2 [Department of Water and Sanitation (DWS) Resource Quality Information Services (RQIS) PES/EIS database].

The Der Brochen study areas fall within the Eastern Bankenveld Ecoregion and is located within the B41G quaternary catchment).

Dominant characteristics of the Eastern Bankenveld Ecoregion Level 2 (10.01) (Kleynhans et al., 2005)				
Dominant primary terrain morphology	Plains; Low Relief; (very limited) Plains; Moderate Relief; Lowlands; Hills and Mountains; Moderate and High Relief; (limited) Open Hills; Lowlands; Mountains; Moderate to High Relief; (limited) Closed Hills; Mountains; Moderate and High Relief ;			
Primary vegetation types (dominant in bold text)	Sour Lowveld Bushveld; Mixed Bushveld ; Clay Thorn Bushveld (limited); Rocky Highveld Grassland; Moist Sandy Highveld Grassland; North Eastern Mountain Grassland; Patches Afromontane Forest.			
Altitude (m a.m.s.l)	500 – 2300			
MAP (mm)	300 – 1000			
Coefficient of Variation (% of MAP)	< 20 to 34			
Rainfall concentration index	55 to >65			
Rainfall seasonality	Early to mid summer			
Mean annual temp. (°C)	10 to 22			
Winter temperature (July)	0 – 24 IC			
Summer temperature (Feb)	8 – 30 IC			
Median annual simulated runoff (mm)	20 to 150; 200 to > 250			

Table 2: Key Attrik	outes of the Eastern	Bankenveld Ecoregion
---------------------	----------------------	-----------------------------

2.2 Ecostatus

2.2.1 Historical Quaternary Catchment Information from Kleynhans, 1999

Water resources are generally classified according to the degree of modification or level of impairment. The classes used by the South African River Health Program (RHP) are presented in the table below and will be used as the basis of classification of the systems in this field and desktop study, as well as in future field studies.

Table 3: Classification of river health assessment classes in line with the RHP

Class	Description
Α	Unmodified, natural.
В	Largely natural, with few modifications.
С	Moderately modified.
D	Largely modified.
E	Extensively modified.
F	Critically modified.

In addition, the Ecological Category (EC) classification will be employed using the eco-status A to F continuum approach (Kleynhans *et al.,* 2007a). This approach allows for boundary categories denoted as B/C, C/D etc., as illustrated in Figure 5.

Figure 4: Ecological Categories (EC) eco-status A to F continuum approach employed

Studies undertaken by the Institute for Water Quality Studies (IWQS) assessed all quaternary catchments as part of the Resource Directed Measures for Protection of Water Resources. In these assessments the EIS, Present Ecological Management Class (PEMC) and Desired Ecological Management Class (DEMC) were defined, and serve as a useful guideline in determining the importance and sensitivity of aquatic ecosystems prior to assessment or as part of a desktop assessment.

To define the EIS, PEMC and DEMC, a study undertaken by Kleynhans (1999) helped define the quaternary catchment of concern (B41G).

The findings by Kleynhans (1999) forms part of the project entitled: "A procedure for the determination of the ecological reserve for the purpose of the national water balance model for South African rivers". The results of the assessment are summarised in the table below.

 Table 4: Quaternary catchment information.

Catchment	Resource	EIS	PEMC	DEMC
B41G	Dwars River (Upper portion)	High	Class B: Largely Natural	B: Sensitive System

According to the ecological importance classification for the quaternary catchment, the system can be classified as a highly sensitive system which, in its present state, can be considered to be a Class B (Largely natural) stream.

The points below summarise the impacts on the aquatic resources in this quaternary catchment (Kleynhans 1999):

- The aquatic resources within this quaternary catchment have been highly affected by bed modification.
- Significant flow modifications and impacts from inundation have taken place, due to several small weirs and the Der Brochen Dam in the system.
- Riparian zones and stream bank conditions are considered to be impacted with some Acacia sp. invasion.
- An impact on water quality, from mining related activities, is deemed likely especially downstream of the upstream mining areas.

In terms of ecological functions, importance and sensitivity, the following points summarise the conditions in this catchment:

- The riverine systems in this catchment have a high diversity of habitat types, increasing their ecological sensitivity and importance. Gorges, rapids, riffles and waterfalls are all known to occur in the area.
- The site has a moderate importance in terms of conservation, with unique geological conditions.
- The riverine resources have a very high sensitivity to flow requirements, with the species Amphilius uranoscopus and Chiloglanis pretoriae being dependent on flow as part of their biological requirements. Flow in the system is also very important for invertebrate community conservation in the area.
- The area has a little importance in terms of migration of aquatic species, although the area forms an important eco-tone with a concomitant increase in species diversity.

- The area is considered likely to be very important in terms of rare and endemic species conservation. However, confidence in this regard is low.
- The area provides important refuge areas due to the very inaccessible nature of the upper reaches of the Groot Dwars River.
- The ecology of the area is considered to be moderately sensitive to changes in water quality.

2.2.2 Department of Water and Sanitation (DWS) Resource Quality Information Services (RQIS) PES/EIS database

The PES/EIS database, as developed by the DWS RQIS department, was utilised to obtain additional background information on the project area. The PES/EIS database has been made available to consultants since mid-August 2014. The information from this database is based on information at a sub-quaternary catchment reach (SQR) level. Descriptions of the aquatic ecology is based on information collated by the DWS RQIS department from available sources of reliable information, such as SA RHP sites, Ecological Water Requirements (EWR) sites and Hydro Water Management system (WMS) sites.

In this regard, information for the SQRs of rivers associated with the focus area were obtained. The applicable SQR points are as follows (see Figure 6):

- B41G 00721 (Groot Dwars River);
- > B41G 00726 Mareesburg Spruit, tributary of Groot Dwars River); and
- ➢ B41G − 00674 (Groot Dwars River)

Tilapia sparrmanii

Key information on fish species, invertebrates and background conditions, as contained in this database and pertaining to the Present Ecological State (PES), ecological importance and ecological sensitivity for the Rivers, are tabulated in Tables 5 to 7 below.

points associated with the	e locus alea		
	B41G – 00721 (Groot Dwars River);	B41G – 00726 (Mareesburg Spruit, tributary of Groot Dwars River)	B41G – 00674 (Groot Dwars River)
Amphilius uranoscopus	Х	X	Х
Barbus motebensis	Х	X	
Barbus neefi	Х		Х
Barbus trimaculatus			Х
Barbus unitaeniatus			Х
Clarias gariepinus	Х	X	Х
Chiloglanis pretoriae	Х	X	Х
Labeobarbus marequensis	Х	X	Х
Labeo cylindricus			Х
Labeo molybdinus			Х
Oreochromis mossambicus			Х
Pseudocrenilabrus philander	Х	Х	Х

Table	5:	Fish	species	previously	collected	from	or	expected	in	the	various	SQR	monitori	ng
point	s as	socia	ated with	the focus a	area									

Х

Х

Х

Table 6	: Invertebrates	previously	collected from	n or e	expected a	at the	various	SQR	monitoring	
points a	associated with	the various	assessment a	areas.						

Таха	B41G – 00721 (Groot Dwars River)	B41G – 00726 (Mareesburg Spruit, tributary of Groot Dwars River)	B41G – 00674 (Groot Dwars River)
Aeshnidae	Х	Х	
Ancylidae		Х	Х
Athericidae	Х	Х	Х
Baetidae > 2 Sp	Х	Х	Х
Belostomatidae	Х	Х	Х
Caenidae	Х	Х	Х
Ceratopogonidae	Х	Х	Х
Chironomidae	Х	Х	Х
Chlorocyphidae	Х		Х
Coenagrionidae	Х	Х	Х
Corduliidae		Х	
Corixidae	Х	Х	Х
Crambidae (Pyralidae)		Х	
Culicidae	Х	Х	Х
Dixidae	Х	Х	
Dytiscidae	Х	Х	Х
Ecnomidae		Х	
Elmidae/Dryopidae	Х	Х	Х
Gerridae	Х	Х	Х
Gomphidae	Х	Х	Х
Gyrinidae	Х	Х	Х
Helodidae		Х	
Heptageniidae	Х	Х	Х
Hirudinea	Х	Х	
Hydracarina	Х	Х	Х
Hydraenidae		Х	Х
Hydrometridae	Х		Х
Hydrophilidae	Х	Х	
Hydropsychidae 2 Sp	Х	Х	Х
Hydroptilidae		Х	Х
Lepidostomatidae		Х	
Leptoceridae	Х	Х	Х
Leptophlebiidae	Х	Х	Х
Libellulidae	Х	Х	Х
Lymnaeidae	Х	Х	
Muscidae	Х	Х	
Naucoridae	Х	Х	Х

Таха	B41G – 00721 (Groot Dwars River)	B41G – 00726 (Mareesburg Spruit, tributary of Groot Dwars River)	B41G – 00674 (Groot Dwars River)
Nepidae	Х	Х	Х
Notonectidae	Х	Х	Х
Oligochaeta	Х	Х	Х
Perlidae	Х		Х
Philopotamidae	Х	Х	Х
Physidae	Х		
Planorbinae	Х	Х	Х
Pleidae	Х	Х	Х
Potamonautidae	Х	Х	Х
Prosopistomatidae	Х		
Psephenidae	Х	Х	Х
Psychodidae	Х		
Simuliidae	Х	Х	Х
Sphaeriidae		Х	
Tabanidae	Х	Х	Х
Thiaridae	Х		
Tipulidae	Х	Х	Х
Tricorythidae	X	X	X
Turbellaria	Х	Х	Х
Veliidae/Mesoveliidae	X	Х	X

Criteria	B41G – 00721 (Groot Dwars River)	B41G – 00726 (Mareesburg Spruit, tributary of Groot Dwars River)	B41G – 00674 (Groot Dwars River)
Synops	sis		
PES Category Median	C (Moderately Modified)	B (Largely Natural)	D (Largely Modified)
Mean El class	High	High	High
Mean ES class	Very High	Very High	Very High
Length	32,04	18,71	11,84
Stream order	1	1	2
Default EC ⁴	A (Very High)	A (Very High)	A (Very High)
PES Det	ails		
Instream habitat continuity MOD	Large	Small	Moderate
RIP/wetland zone continuity MOD	Small	Small	Moderate
Potential instream habitat MOD activities	Moderate	Moderate	Large
Riparian/wetland zone MOD	Small	Small	Moderate
Potential flow MOD activities	Moderate	Moderate	Large
Potential physico-chemical MOD activities	Moderate	Small	Large
El Deta	ils		
Fish spp/SQ	8	7	12
Fish average confidence	3,75	4,71	5
Fish representivity per secondary class	Low	Low	Moderate
Fish rarity per secondary class	Moderate	Moderate	High
Invertebrate taxa/SQ	48	51	41
Invertebrate average confidence	3,92	3,94	4,17
Invertebrate representivity per secondary class	Very High	Very High	High
Invertebrate rarity per secondary class	Very High	Very High	High
El importance: riparian-wetland-instream vertebrates		Lliab	Vor High
(excluding fish) rating	LOW	riign	very riigit
Habitat diversity class	Very High	High	Moderate
Habitat size (length) class	High	Low	Low
Instream migration link class	Moderate	Very High	High
Riparian-wetland zone migration link	Very High	Very High	High
Riparian-wetland zone habitat integrity class	Very High	Very High	High
Instream habitat integrity class	High	High	Moderate
Riparian-wetland natural vegetation rating based on percentage natural vegetation in 500m	Very High	Very High	Very High
Riparian-wetland natural vegetation rating based on expert rating	Low	Low	Low
ES Deta	ails		-
Fish physical-chemical sensitivity description	Very High	Very High	Very High
Fish no-flow sensitivity	Very High	Very High	Very High
Invertebrates physical-chemical sensitivity description	Very High	Very High	Very High
Invertebrates velocity sensitivity	Very High	Very High	Very High
Riparian-wetland-instream vertebrates (excluding fish)			Mamallat
intolerance water level/flow changes description	Hign	Hign	very High
Stream size sensitivity to modified flow/water level changes description	Very High	Very High	High
Riparian-wetland vegetation intolerance to water level changes description	Low	Low	Low

Table 7: Summary of the ecological status of the sub-quaternary catchment (SQ) reaches associated with the focus area based on the DWS RQS PES/EIS database

¹ PES = Present Ecological State; confirmed in database that assessments were performed by expert assessors;

² EI = Ecological Importance;

³ ES = Ecological Sensitivity
 ⁴ EC = Ecological Category; default based on median PES and highest of El or ES means.

This information was used to compile the following expected fish species table, also including intolerance ratings and frequency of occurrence (FROC) scores.

Table 8: Intolerance ratings as well as FROC (anticipated by Ecologist as none is provided for catchment B41G in Kleynhans *et al.*, 2007) scores for naturally occurring fish species expected to occur in the Groot Dwars River and surrounding area [Department of Water and Sanitation (DWS) Resource Quality Services (RQS) PES/EIS database, sub-quaternary catchment (SQ) reach B41G-00674 (Groot Dwars River)].

SPECIES NAME	COMMON NAME	INTOLE- RANCE RATING	FROC score	COMMENTS
Amphilius uranoscopus	Stargazer (mountain catfish)	4.8	1	Okovango and Zambezi systems, east coast rivers south to Mkuze in northern Kwa-Zulu Natal. IUCD red data list status: Least concern .
Enteromius motebensis	Marico barb	3.1	1	The headwater tributaries of the Marico, Crocodile and Steelpoort branches of the Limpopo River System. IUCD red data list status: Near threatened ¹ .
Enteromius neefi	Sidespot barb	3.4	1	Tributaries of the Steelpoort-Limpopo system. IUCD red data list status: Least concern.
Enteromius trimaculatus	Threespot barb	2.2	1	Common in many river systems of southern Africa IUCD red data list status: Least concern .
Enteromius unitaeniatus	Longbeard barb	1.7	1	Widely distributed in southern Africa IUCD red data list status: Least concern .
Chiloglanis pretoriae	Shortspine Suckermouth or Rock catlet	4.6	1	Widespread (Incomati, Limpopo & Zambezi) IUCD red data list status: Least concern .
Clarias gariepinus	Sharptooth Catfish	1.4	1	Widespread throughout southern Africa. IUCD red data list status: Least concern.
Labeo cylindricus	Redeye labeo	3.1	1	Widespread East-African rivers down to Phongolo system in KwaZulu-Natal IUCD red data list status: Least concern.
Labeo molybdinus	Leaden labeo	3.2	1	Middle and lower Zambezi down to Tugela system in KwaZulu-Natal IUCD red data list status: Least concern .
Labeobarbus marequensis	Largescale yellowfish	2.6	2	Widely distributed from the middle and lower Zambezi south to the Phongolo system. IUCD red data list status: Least concern .
Oreochromis mossambicus	Mozambique Tilapia	1.3	1	East coastal rivers from the Lower Zambezi River south to the Bushman's system, Eastern Cape. IUCD red data list status: Near threatened ² .

SPECIES NAME	COMMON NAME	INTOLE- Rance Rating	FROC score	COMMENTS
Pseudocrenilabrus philander	Southern mouthbrooder	1.3	1	From the Orange and southern KwaZulu-Natal northwards throughout the region. Extends to southern Congo tributaries and Lake Malawi. IUCD red data list status: Not yet assessed for IUCN Red List.
Tilapia sparrmanii	Banded Tilapia	1.3	2	Extensively translocated south of the Orange in the Cape. IUCD red data list status: Least concern .

Intolerance ratings: Tolerant: 1-2; moderately tolerant :> 2-3; Moderately Intolerant: >3-4; Intolerant: >4

¹ The Marico Barb (*Barbus motebensis*) occurs in small streams and has a restricted distribution range with an extent of occurrence (EOO) of 12,552 km² and very small area of occupancy (AOO) of 132 km². It is known from approximately 20 locations, most of which are threatened by water abstraction associated with agriculture, with some also affected by urban water pollution. Other streams are impacted by seepage from mines via the dolomitic groundwater flow and also by competition from invasive alien fish. These impacts have been exacerbated by the severe recent droughts. The species qualifies as Near Threatened.

² Threatened by hybridization with the rapidly spreading *Oreochromis niloticus*. *Oreochromis niloticus* is being spread by anglers and for aquaculture. Hybridization is already occurring throughout the northern part of the species' range, with most of the evidence coming from the Limpopo River system. In terms of locations the threat of *Oreochromis niloticus* is widespread, but probably more than 50% of the locations are not yet affected. Given the rapid spread of *O. niloticus* it is anticipated that this species will qualify as threatened under Criterion A due to rapid population decline through hybridization. The species is therefore assessed as Near Threatened.

Figure 5: Relevant Sub-Quaternary Catchment Reaches of the Groot Dwars River and associated Mareesburg Spruit in the vicinity of the Der Brochen Investigation Area.

2.2.3 Classes and resource quality objectives of water resources for catchments of the Olifants River in terms of Section 13(1) (a) and (b) of the National Water Act (Act no.36 of 1998)

The classes and resource quality objectives are determined for all or part of every significant water resource within the catchments of the Olifants as set out below (DWS, 2016):

Water Management Area: Olifants

Drainage Regions: B primary drainage region

Rivers: Olifants River System

- A summary of the water resource classes for Integrated Units of Analysis (IUA) and ecological categories for the Olifants is set out in Table 6;
- Integrated Units of Analysis are classified in terms of their extent of permissible utilization and protection as either:
 - Class I: indicating high environmental protection and minimal utilization;
 - Class II indicating moderate protection and moderate utilization;
 - Class III indicating sustainable minimal protection and high utilization.
- Resource Quality Objectives (RQO) are defined for each prioritised Resource Unit (RU) for every IUA in terms of water quantity, quality, habitat and biota as shown in Table 7 to 9 respectively;
- Where specified, the ecological category or Recommended Ecological Category (REC) means the assigned ecological condition by the Minister to a water resource that reflects the ecological condition of that water resource in terms of the deviation of its biophysical components from a predevelopment condition;
- RQO are applicable upon the date of approval by the Minister, unless otherwise specified.

The tables below define the RQO for the Steelpoort River catchment area (DWS, 2016):

Table 9: Water Resource Classes per Integrated Unit of Analysis (IUA) and Ecological Categories per Biophysical Node

IUA	Water Resource Class for IUA	Biophysical Node Name	Quaternary Catchment	River Name	EC to be maintained	Natural MAR (million m3/a)	EWR as % of natural MAR
		HN62	B41G	Upper reaches of Groot Dwars River (before mining impacts)	С	24.5	13.33
Steelpoort River	111	HN61	B41G	Klein Dwars (Confluences with the Groot Dwars)	D	-	-
		EWR Site 10	B41K	Steelpoort (Confluence with Olifants River)	D	336.6	7.43

Table 10: Resource Quality Objectives (RQO) for River water quality in the Olifants catchment

IUA	Class	River	RU	Biophysical Node Name	REC	Component	Sub- component	RQO	Indicator/ Measure	Numerical Limits
6	III	Steelpoort (EWR site - EWR10) (existing) (confluence with Olifants - outlet of IUA6)	RU66	64	D	Quality	Nutrients	Nutrients should be maintained to support the ecosystem.	Phosphate (PO ₄)	≤ 0.125 mg/L P
6		Steelpoort (EWR site - EWR10) (existing) (confluence with Olifants -outlet of IUA6)	RU66	66	D	Quality	Toxins	Toxics should be minimised to reduce the risk of human health and ecosystem impairment.	Al As Cd hard Cr(VI) Cu hard Hg Mn Pb hard Se Zn Chorine Endosulfan Atrazine	≤ 0.063 mg/L ≤ 0.058 mg/L ≤ 1.6 µg/L ≤ 68 µg/L ≤ 0.53 µg/L ≤ 0.53 µg/L ≤ 0.680 mg/L ≤ 5.8 µg/L ≤ 0.013 mg/L ≤ 1.8 µg/L free Cl ≤ 0.08 µg/L ≤ 48.8 µg/L

Table 11: Resource Quality Objectives for River Instream Ha	abitat and Biota in the Olifants catchment
---	--

RIVER INSTREAM HABITAT AND BIOTA								
IUA	Class	River	RU	REC	RQO Numerical Objectives			
6.	III	Steelpoort	64	D	Instream habitat must be in a largely modified or better condition to support Instream Habitat Integrity catego			
Steelpoort			&		ecosystem processes.			
River			66		Instream biota must be in a largely modified or better condition.	Fish ecological category: \geq D (\geq 42)		
catchment					Low and high flows must be suitable to maintain the river habitat and ecosystem condition.	Macro-invertebrate ecological category: \geq D (\geq 42)		
					Water quality:	Instream Ecostatus category: ≥ D (42)		
					Toxics must be minimised to reduce the risk of human health and ecosystem	Hydrological category: \geq D (\geq 42)		
					impairment.	Water Quality category: \geq D (\geq 42)		

Table 12: Resource Quality Objectives for River Riparian Zone Habitat in Olifants catchment

IUA	Class	River	RU	REC	Component	RQO	Numerical Limits
6	111	Steelpoort	RU66	D	Quality	 The riparian zone must be in a largely modified or better condition. Riparian vegetation must be in a largely modified or better condition. Low and high flows must be in a largely modified or better condition. 	 ➢ Riparian Zone Habitat Integrity category ≥ D (≥ 42) ➢ Riparian ecostatus category: ≥ D (≥ 62) ➢ Hydrological category ≥ D (≥ 62)
6	III	Steelpoort	RU64	C/D	Quality	 The riparian zone must be improved to be in a better than largely modified condition. Riparian vegetation must be maintained in a largely modified or better condition Low and high flows must be in a largely modified or better condition. 	 ➢ Riparian Zone Habitat Integrity category ≥ C/D (≥ 58) ➢ Riparian ecostatus category: ≥ D (≥ 42) ➢ Hydrological category ≥ D (≥ 42)

3. METHOD OF INVESTIGATION

Best practice methodologies (detailed methodologies to be provided on request but a more detailed summary of the methods employed are provided in Appendix 2) were used to assess the aquatic ecological integrity of the various sites, based on water quality, habitat suitability and biological impacts and integrity.

All work was undertaken by a South African River Health Program (SA RHP) accredited assessor. Note that data obtained were obtained from the existing biomonitoring program. Period of biomonitoring used for this purpose ranged from November 2001 to December 2017. The only exception is the assessment of the riparian vegetation through application of the VEGRAI Ecostatus tool, which was applied during February 2018.

Factors investigated included the following:

- Visual conditions of the site, including an assessment of impacts on the stream at each point;
- On-site testing of biota specific water quality parameters including pH, Electrical Conductivity (EC), Dissolved Oxygen concentration (DO) and temperature took place at the biomonitoring sites. The results aid in the interpretation of the data obtained by the biomonitoring;
- > Water Quality Guidelines Consulted (also see footnote in Glossary of Terms" section:
 - Olifants River Ecological Water Requirements Assessment (OREWRA) (Palmer and Rossouw, 2001) for the Lower Olifants, Steelpoort River [denoted as OREWRA (2001) in discussions that follow];
 - South African water quality guidelines volume 7, Aquatic ecosystems, by the Department of Water Affairs and Forestry (DWAF), now Department of Water and Sanitation (DWS) [denoted as DWAF (1996) in discussions that follow];
 - Classes and resource quality objectives of water resources for the Olifants catchment from Government Gazette number 39943, 22 April 2016, Department of Water and Sanitation (DWS 2016), with reference to ecological category, water quality in terms of nutrients and toxins, instream habitat and biota and riparian zone habitat (see Section 2, used to aid in interpretation of biological monitoring data).
- The general habitat integrity of the site was assessed based on the application of the Index of Habitat Integrity (IHI), based on the protocol of Kleynhans *et al.* (2008);
- Assessment of the riparian vegetation was performed using the Riparian Vegetation Response Assessment Index (VEGRAI), designed in such a way that qualitative ratings translate into quantitative and defensible results (Kleynhans *et al.*, 2007b);

- Habitat suitability for aquatic macro-invertebrates was determined using the IHAS (Invertebrate Habitat Assessment System) method, and was applied according to the protocol of McMillan (1998);
- The integrity of the aquatic macro-invertebrate community was assessed using the South African Scoring System version 5 (SASS5) as defined by Dickens & Graham (2002) as well as the application of the Macro-Invertebrate Response Assessment Index (MIRAI) Ecostatus tool as described by Thirion (2007);
- Interpretation of the results, in relation to reference scores, was made according to the SASS5 data interpretation guidelines (Dallas 2007). Aquatic macro-invertebrates expected within the system were derived from data obtained during previous assessments;
- Fish fauna were assessed employing the Fish Response Assessment Index (FRAI) also with consideration of historical and desktop data available;
- The Ecological Importance and Sensitivity of the aquatic resources was determined according to the protocols of DWAF (1999);
- The Environmental Impact Assessment method as supplied by the EAP was applied to identify the impacts that may affect the aquatic resources as a result of the proposed mining activities, and to aim to quantify the significance thereof (see Appendix 2).

4. **RESULTS AND INTERPRETATION**

The period of biomonitoring data used for the purpose of this report ranged from November 2001 to December 2017. VEGRAI was applied during February 2018. The sections below present the results of each of the sampling points applicable to the Groot Dwars River.

Results are presented as "dashboard style" reports. These dashboard reports aim to present concise summaries of the data on as few pages as possible, in order to allow for integration of results by the reader to take place. Where required further discussion and interpretation is provided.

Table 13: Results of the assessment at site GD2 (Groot Dwars River downstream of the Booysendal boundary fence).

Site GD2			In situ physico	-chemical water q	quality		Aquatic macro-i	nvertebrate communi	ty and habitat i	ntegrity
			Parameter Value % Variation (% Var) Proceedings of the second sec		Parameter	Score/Category	% Var. from ref ecoregion data (SASS5)	% Var change from baseline (July 2009)		
		pH 7.54 EC (mS/m) 26.0 TDS (mg/L) 169.0 DO (mg/L) 6.78 DO (% sat) 88.9 Temp (C) 22.1		-1.3 +98.5 NA -6.2 NA NA	SASS5 score Number of taxa ASPT score IHAS score MIRAI score Instream IHI Riparian IHI	142 23 6.2 69 (Good) 63.5 (Category C) 85.8 (Category B) 83.2 (Category B)	-30.7 NA -19.9 NA NA NA NA	+4.4 NA 0.0 +1.5 NA NA NA		
Figure 6: General view of the GD2 site at the time of the last assessment (December 2017).			Key: Negative v Normal text = n (compared to g Red text = sigr Blue text = sig	value = decrease; F o significant chang guideline). ifficant deteriorati nificant improvem	Positive value e; Bold text ion; nent.	e = increase. = significant change	Key: Negative value = decrease; Positive value = increase. A temporal deterioration exceeding 15% was considered significant.			
Algal proliferation Algae present on rocks.			Site specific s	patial water qualit	y variations	(% var.)	Site specific spa var.)	atial aquatic invertebr	ate community	variations (%
Depth profiles	Shallow. Genera	llly, > ½ - 1 m.	Parameter	% Variation from	n upstream	spatial reference	Parameter %	% Variation from upstream spatial reference		
Flow condition Riparian zone characteristics Water clarity	Slow flow. Mix of grass and 81% and 95% bi Water was disco	shrubs, between ank cover. loured.	pH EC (mS/m) DO (mg/L)** Temp	NA (No upstream	n spatial refe	rence)	SASS5 ASPT N IHAS	IA (No upstream spatia	l reference)	
SITE ECOSTATUS (Biomonitoring data Dallas (2007)	ATEGORY assessment resu	lt Category C	 Key Drivers of System Change Lack of strong flowing water at this point and variability in system flow rate also limits habitat availability at this point, thus limiting the diversity and sensitivity of the aquatic community likely to occur at this point. 							
MIRAI Category C Instream IHI Category B Riparian IHI Category B		 Trends Compared to Baseline Applied to Proposed Expansion ➢ Variation from ecoregion reference data shows that the system is already impacted upon prior to any potential impact from existing Der Brochen activities and infrastructure; ➢ Temporal water quality data shows decreasing pH and DQ, and increasing EC compared to baseline. Although absolute values are still 								
EIS (Kleynhans 1999, DWS RQIS)High to very highPEMC (Kleynhans 1999)BDEMC (Kleynhans 1999)BPES (DWS RQIS)DREC (DWS 2016, RQOs)C/D			 within expected ranges (see discussion in Table 14), temporal data shows catchment-wide impact, particularly with reference to salt load; Despite the temporal impact on water quality, SASS5, ASPT and IHAS scores did not decrease compared to baseline. However, as mentioned comparison to ecoregion reference data, negative impact on macro-invertebrate community is evident; Prior to any potential impact from existing Der Brochen activities the system is already impacted upon. Additional expansion may potentially result in increased risk of impact, with specific reference to risk of spillage from dirty water systems (elevated EC, risk of sedimentation). 							

NA = Not Applicable, SASS reference score = 205, ASPT reference score = 7.0

Table 14: Temporal variations observed at site GD2 since the baseline assessment in July 2009.

Table 15: Results of the assessment at site GD3 (Approximately 100 m downstream of the existing low water crossing of the Groot Dwars River, upstream of the Helena/der Brochen boundary fence).

Site GD3			In situ physico	o-chemi	cal water quality		Aquatic macro-invertebrate community and habitat integrity				
STAR OF			Parameter Value % Variation (% Var) F change from baseline (July 2009)		Parameter	Score/Category	% Var. from ref ecoregion data (SASS5)	% Var change from baseline (July 2009)			
			pH EC (mS/m) TDS (mg/L) DO (mg/L) DO (% sat) Temp (C)		7.39 22.0 143.0 6.98 87.3 20.1	+7.7 +22.2 NA -15.4 NA NA	SASS5 score Number of taxa ASPT score IHAS score MIRAI score Instream IHI Riparian IHI	re 77 -62.4 -49.3 taxa 14 NA NA > 5.3 -24.3 -10.2 68 (Good) NA -8.1 e 50.6 (Category D) NA NA II 84.6 (Category B) NA NA I 65.8 (Category C) NA NA			
			Key: Negative Normal text = n (compared to g Red text = sign Blue text = sign	value = (o signifi guidelin nificant	decrease; Positive valu cant change; Bold text ne). deterioration; timprovement	e = increase. = significant change	Key: Negative value = decrease; Positive value = increase. A temporal deterioration exceeding 15% was considered significant.				
Figure 9: General view of the GD3 site at the time of the last assessment (December 2017)			Dide text - Sig	micam	improvement.						
Algal proliferation Algal proliferation on rocks.			Site specific s	patial w	ater quality variations	s (% var.)	Site specific sp	atial aquatic invertebr	ate community	variations (%	
Depth profiles	Shallow. Genera	ally, > ½ - 1 m.	Parameter	% Var	r from upstream spatia	al reference GD2	Parameter	% Var from upstream s	patial reference	e GD2	
Flow condition Riparian zone characteristics Water clarity	Slow flow. Mix of grass and 51% and 80% ba	l shrubs, between ank cover.	pH EC (mS/m) DO (mg/L)**	-2.0 -15.4 +2.9			SASS5 ASPT IHAS	ASS5 -45.8 SPT -14.5 AS -1.4			
SITE ECOSTATUS C	ATEGORY		Kev Drivers of	Systen	n Change		<u>ll_</u>				
Biomonitoring data	assessment resu	ılt	Lack of stro	ng flowi	ing water at this point a	nd variability in system flo	ow rate also limits	habitat availability at this	point, thus limit	ing the diversity	
Dallas (2007) MIRAI		Category E/F Category D	 and sensitivity of the aquatic community likely to occur at this point. Potential water quality impacts from surrounding upstream activities 								
Instream IHI Category B Riparian IHI Category C		 Trends Compared to Baseline Applied to Proposed Expansion Temporal water quality data shows decreasing DO, but increasing pH and EC compared to baseline. Temporal data shows potential impact from existing Dos Brachen existing a particularly with reference to act lead. 									
Desktop assessment resultEIS (Kleynhans 1999, DWS RQIS)High to very highPEMC (Kleynhans 1999)BDEMC (Kleynhans 1999)BPES (DWS RQIS)DREC (DWS 2016, RQOs))C/D			 SASS5, ASPT and IHAS scores also decreased compared to baseline. Temporal data shows values are variable but with a generally decreasing trend evident for SASS5 score, indicating existing impact on the macro-invertebrate community in the system; Biomonitoring data suggest that the Der Brochen dam as well as other upstream impacting mining operations and existing Der Brochen exploration activity has an impact on the Groot Dwars River. Additional expansion may potentially result in increased risk of impact, with specific reference to risk of spillage from dirty water systems (elevated EC, risk of sedimentation). 								

NA = Not Applicable, SASS reference score = 205, ASPT reference score = 7.0

Table 16: Temporal variations observed at site GD3 since the baseline assessment in April 2007.

pH, DO(mg/L) and Temp	30 30 30 30 30 30 30 30 30 30	200 180 160 100 100 100 100 100 100 10
Figure	10: Site-specific temporal water quality variation at site GD3	Figure 11: Site-specific temporal macro-invertebrate community integrity variation at site GD3
 Wi Ec Se tim EC bas wh EC bas wh EC bas Wh qua oF rer Dis aqua A DC line A CO Ne Te ext me 	th expected Electrical Conductivity (EC) ranging from 35 – 45 mS/m as stipulated in the Olifants River ological Water Requirements Assessment (OREWRA) (2001) for the Lower Olifants, Steelpoort River: ctions 1 to 9 for the month of December, the absolute EC values can be considered as largely natural over te.; C increased by 22.2% when compared to the baseline assessment (April 2007). The temporal change from seline data exceeds the DWS target water quality guideline recommendation (DWAF, 1996) (Table 15), ich advocates that seasonal and temporal changes should not exceed 15%. The long-term trend line for C shows a clear increasing trend; hen compared to the baseline assessment, the pH increased by 7.7%, and exceeds the DWS target water ality guideline (DWAF, 1996) (Table 15), which advocates that seasonal and temporal changes should not ceed 5%. However, the absolute value complies with the pH range of 7.0 to 8.5 recommended by REWRA (2001) for a river in this section of the catchment. The long-term trend line suggests that pH mained stable; solved oxygen (DO) saturation can be considered as adequate in supporting a diverse and sensitive uatic community, as it complies with the 80% saturation recommendation (DWAF, 1996).; O concentrations are variable over time and largely dependent on seasonality However, the long-term trend e suggests that DO remained largely stable at site GD3; for to Table 10 for a discussion on spatial trends; mporal trends show existing system water quality impact in terms of salt load. The proposed pansion infrastructure and operation will like contribute to the risk, hence strict mitigation easures are required should development continue.	 When compared to the baseline assessment (April 2007) the SASS5 score has decreased by 49.3% and the ASPT score by 8.1%, along with a 8.1% decrease in habitat suitability (Table 4); The macro-invertebrate community diversity (of which SASS score is representative) and sensitivity (of which ASPT score is representative) is highly variable over time and indicative of seasonal trends; The long-term trend lines show a slight increasing trend for ASPT, and a decreasing trend for both SASS5 and IHAS; The temporal decrease in macro-invertebrate community diversity and sensitivity is likely related to the slight changes in the water quality of the system (as was observed at site GD2). This is supported by the fact that temporal trends for SASS and ASPT score does not correlate with trends in changes in the IHAS score, indicating that factors other than habitat suitability affects macro-invertebrate community integrity to a greater degree. However, the long term decreasing trend in IHAS score may contribute to the long-term decreasing trend observed for SASS5; Macro-invertebrate habitat suitability can be considered as adequate or highly suited and stable over time Comparison of SASS5 and ASPT scores to ecoregion reference data, as well as the long-term decreasing trend observed for the SASS5 score, shows that the macro-invertebrate community is already impacted upon. The proposed expansion developments, if approved, could potentially contribute further to potential impact, notably with reference to spillage, seepage or decant from dirty water areas, resulting in decreased water quality, toxicological hazard and sedimentation/deposition of fine tailings. Strict mitigation measures are required should development continue.Refer to Table 11 for a discussion on spatial trends

Table 17: Posults of the assessment at site GD4 (Great Dwars Piver downstream of Mototole concentrate	or but unstroam fr	om other mining activities)
Table 17. Results of the assessment at site GD4 (Groot Dwars River downstream of Mototolo concentration	or but upsiteam in	nii oliier minning activities).

Site GD4			In situ physico	o-chemical water quality		Aquatic macro-	invertebrate community	and habitat in	ntegrity
Nord San		Alter	Parameter	Value	% Variation (% Var) change from baseline (July 2009)	Parameter	Score/Category	% Var. from ref ecoregion data (SASS5)	% Var change from baseline (July 2009)
			pH EC (mS/m) TDS (mg/L) DO (mg/L) DO (% sat) Temp (C)	6.97 38.0 247.0 8.24 99.1 18.5	-9.4 +111.1 NA +10.2 NA NA	SASS5 score Number of taxa ASPT score IHAS score MIRAI score Instream IHI Riparian IHI	90 15 6.0 73 (Good) 50.8 (Category D) 81.5 (Category B/C) 74.3 (Category C)	-56.1 NA -14.3 NA NA NA NA	-51.6 NA -9.1 -11.0 NA NA NA
Figure 12: General view of the GD4 site at the time of the last assessment (December 2017).			Key: Negative v Normal text = n (compared to g Red text = sign Blue text = sign	value = decrease; Positive v o significant change; Bold guideline). nificant deterioration; nificant improvement.	value = increase. text = significant change	Key: Negative value = decrease; Positive value = increase. A temporal deterioration exceeding 15% was considered significant.			
Algal proliferation Algal proliferation on rocks.			Site specific s	patial water quality variati	ions (% var.)	Site specific sp var.)	atial aquatic invertebrate	e community v	variations (%
Depth profiles	Shallow. Genera	ally, > ½ - 1 m.	Parameter	% Variation from upstream spatial reference GD2	% Variation from upstream spatial reference GD3	Parameter % Variation from upstream spatial reference GD2		% Variation upstream s reference (n from spatial GD3
Flow condition Riparian zone characteristics Water clarity	Slow flow. Mix of grass and 81% and 95% bi Slightly discolou	l shrubs, between ank cover. red.	∙ pH* EC (mS/m) ∙ DO (mg/L)**	-7.6 +46.2 +21.5	-5.7 +72.7 +18.1	SASS5 ASPT IHAS	36.6 3.2 +5.8	+16.9 +13.2 +7.4	
SITE ECOSTATUS CATEGORY Biomonitoring data assessment result Dallas (2007) Category D MIRAI Category D		llt Category D Category D	 Key Drivers of System Change Lack of strong flowing water at this point and variability in system flow rate also limits habitat availability at this point, thus limiting the diversity and sensitivity of the aquatic community likely to occur at this point. Potential impact from Mototolo concentrator on salt load compounded by potential impacts from upstream pollution sources and geological variables of the time of the time of the time of the time of the time. 						
Instream IHI Category B/C Riparian IHI Category C Desktop assessment result		Trends Compared to Baseline Applied to Proposed Expansion > Temporal water quality data shows increased EC and decreased pH compared to baseline. Temporal data shows potential impact from							
EIS (Kleynhans 1999, DWS RQIS) PEMC (Kleynhans 1999)High to very high BDEMC (Kleynhans 1999) PES (DWS RQIS)BDEMC (Kleynhans 1999) REC (DWS 2016, RQOs)DThe Exectature Category for the IHI Dallas (2007) and MIRA			 SASS5, ASPT and IHAS scores are variable over time, and in December 2017 lower compared to conditions at baseline; However, process water systems associated with the existing Mototolo concentrator, based on available historical data, poses a significant toxicological hazard to the receiving environment [high acute hazard (Class 4) in some instances]. Although the Groot Dwars River is already impacted upon, any potential spills or overflow from dirty water areas are likely to have negative impact. It is anticipated that process water systems associated with the proposed expansion will pose a similar risk (i.e. potential cumulative impact). 						
				o with the Resource	c quality objectives (NQO	Sportine Onialits	inter caterinent (DWS, A	2010].	

NA = Not Applicable, SASS reference score = 205, ASPT reference score = 7.0

Table 18: Temporal variations observed at site GD4 since the baseline assessment in April 2007.

Table 19: Results of the assessment at site GD5 (Groot Dwars River in Xstrata game farm downstream from tributary confluence and also downstream from other mining activities).

Site GD5			In situ physico	-chemical water	quality		Aquatic macro-invertebrate community and habitat integrity				integrity
			Parameter Value 9		% Variation (% Var) change from baseline (July 2009)	Parameter	Score/Categ	ory	% Var. from ref ecoregion data (SASS5)	% Var change from baseline (July 2009)	
			pH 7.92 +5.2 SASS5 score 85 EC (mS/m) 33.0 +73.7 Number of taxa 17 TDS (mg/L) 214.5 NA ASPT score 5.0 DO (mg/L) 7.56 -6.1 IHAS score 71 (Good) DO (% sat) 100.7 NA MIRAI score 59.0 (Category D) Temp (C) 23.7 NA Instream IHI 87.0 (Category B) Riparian IHI 74.1 (Category C) Key: Negative value = decrease; Positive value = increase. Key: Negative value = decrease; Positive value = increase. Key: Negative value = decrease; Positive value = increase.			ry D) ry B) ry C) Positive v	-58.5 NA -28.6 NA NA NA NA value = increa	-40.1 NA -5.7 -6.6 NA NA NA Sse.			
Figure 15: General view of the GD5 site at the time of the last assessment (December 2017).			Normal text = no (compared to g Red text = sign Blue text = sign	o significant chang juideline). lificant deteriorat nificant improver	ge; Bold text = tion; nent.	significant change	A temporal deterioration exceeding 15% was considered significant.				
Algal proliferation	Algal proliferation of	bserved on rocks.	Site specific sp	Site specific spatial water quality variations (% var.) Site specific spatial aquatic invertebrate community variation var.)				variations (%			
Depth profiles	Shallow. Generally	r, > ½ - 1 m.	Parameter	% Var. from site GD2	% Var. from site GD3	N % Var. from site GD4	Parameter	% Var. from site GD2	% Var. site GI	from D3	% Var. from site GD4
Flow condition Riparian zone characteristics Water clarity	Slow flow. Mix of grass and sl 81% and 95% ban Clear	nrubs, between k cover.	pH* EC (mS/m) DO (mg/L)**	+0.3 +2.3 +8.5	+26.9 +50 -13.2	+16.8 +13.5 -3.9	SASS5 ASPT IHAS	-40.1 - 19.3 +2.9	+10.4 -5.7 +4.4		-5.6 -16.7 -2.7
SITE ECOSTATUS C	ATEGORY		Key Drivers of	System Change			<u>I</u> I				
Biomonitoring data assessment result Dallas (2007) MIRAI Category D		Category E/F Category D	 Lack of strong flowing water at this point and variability in system flow rate also limits habitat availability at this point, thus limiting the diversity and sensitivity of the aquatic community likely to occur at this point. Potential impact from Mototolo concentrator on salt load compounded by potential impacts from upstream pollution sources and geological variation at the time of the assessment. 								
Riparian IHI Category B Riparian IHI Category C			Trends Compared to Baseline Applied to Proposed Expansion								
Desktop assessmen EIS (Kleynhans 1999 PEMC (Kleynhans 1 DEMC (Kleynhans 1 PES (DWS RQIS) REC (DWS 2016, RQ	it result 9, DWS RQIS) 999) 999) (Os)	High to very high B D C/D	 temporal da SASS5, AS Potential in the Groot D is anticipate 	 Temporal data shows potential impact from existing Der Brochen act SASS5, ASPT and IHAS scores are variable over time, and in Dect Potential impact from the existing Mototolo concentrator has been of the Groot Dwars River is already impacted upon, any potential spill is anticipated that process water systems associated with the proportional data and the groot data and the groot data and the process water systems associated with the proportional data and the groot data and the groot data and the groot data and the groot data and the process water systems associated with the proportional data and the groot da				compared to con GD4. The same ir dirty water areas Ill pose a similar r	ditions at npact ap are likely isk (i.e. p	baseline; plies to site G to have neg otential cumu	5D5. Although ative impact. It llative impact).
The Ecostatus Cate	gory for the IHI and	MIRAI classification	ns comply with th	ne Resource Qua	lity Objectives	s (RQO's) of the Olifar	nts River catchme	ent (DWS, 2016).			

NA = Not Applicable, SASS reference score = 205, ASPT reference score = 7.0

Table 20: Temporal variations observed at site GD5 since the baseline assessment in April 2007.

Table 22: Spatial trends in SASS5, ASPT and IHAS scores at sites GD2 to GD5 (Groot Dwars River)

August 2019

Table 23: Results of the assessment at site	(Mareesburg Spruit that confluences with the Gr	oot Dwars River just above GD5).

Site T1			In situ physico	o-chemical water quality	Aquatic macro-	vertebrate community and habitat integrity				
			Parameter	Value	% Variation (% Var) change from baseline (July 2009)	Parameter	Score/Category	% Var. from ref ecoregion data (SASS5)	% Var change from baseline (July 2009)	
			pH EC (mS/m) TDS (mg/l)	7.90 46.0 200.0	+6.6 +155.6	SASS5 score Number of taxa	95 19 5 0	-53.7 NA	-5.0 NA	
and a state of the second	and the second second	14 A A A A A A A A A A A A A A A A A A A	DO (mg/L)	673	-19.6	IHAS score	5.0 65 (Good)	-20.0 NA	-15	
and the solution of the solution	100		DO (% sat)	DO (% sat) 96.1 NA		MIRAI score	52.3 (Category D)	NA	NA	
			Temp (C)	Temp (C) 27.2 NA		Instream IHI	83.4 (Category B)	NA	NA	
			,			Riparian IHI	70.5 (Category C)	NA	NA	
0823	and the second	1914	Key: Negative	value = decrease; Positive v	value = increase.	Key: Negative va	alue = decrease; Positive	value = increas	se.	
a the second		and the second	Normal text = n	o significant change; Bold	text = significant change	A temporal dete	A temporal deterioration exceeding 15% was considered			
		CALL TO LODGE	(compared to	guideline).		significant.	significant.			
			Red text = sign	nificant deterioration;						
Figure 20: General view of the 11 site at the time of the last assessment (December 2017)			Dide text - Sig	nineant improvement.						
Algal proliferation None observed			Sito specific o	natial water quality variat	ione (% var)	Sito crocific cr	atial aquatic invertebrat	oommunity	variations (%	
Algar promeration None observed.			Site specific s	patial water quality variat	ions (% var.)	var.)	allal aqualic invertebrat		analions (%	
Depth profiles	Shallow. Generally	y, < ½ m.	Parameter	% Var. from upstream spatial reference GD2	% Var. from downstream spatial reference GD5	Parameter %	6 Var. from upstream patial reference GD2	% Var. from spatial refe	n upstream erence GD5	
Flow condition	Slow flow.		nU*	+1.8	+1.5	84885	22.4	+11.9		
Riparian zone	Mix of grass and s	hrubs, between	рп FC (mS/m)	+4.0	+4.5 +39 <u>4</u>	ΔSPT	33.1 19 <i>.</i> 4	+11.0		
characteristics	81% and 95% ban	k cover.	DO (mg/L)**	-0.8	-15.0	IHAS -	5.8	-8.5		
Water clarity	Discoloured.									
SITE ECOSTATUS (Key Drivers of	System Change	m ourrounding ogrioultural o	and mining activities	on calt load			
Biomonitoring data	assessment result			of strong flowing water at	this point and variability in sy	ustem flow rate also	limits habitat availability :	at this point the	is limiting the	
Dallas (2007)		Category E/F	dive	rsity and sensitivity of the a	quatic community likely to oc	ccur at this point.	initia habitat availability t			
Instream IHI		Category B	Trends Compa	ared to Baseline Applied t	o Proposed Expansion					
Riparian IHI Category C			Temporal v	water quality data shows de	creasing DO and increasing	pH and EC compa	red to baseline. Although	absolute value	s are	
Desktop assessment result			borderline	with expected ranges for E	C (see discussion in Table 2 tioularly with reference to cal	4), temporal data si t lood:	nows potential impact from	n existing minir	ng and	
EIS (Kleynhans 199	9, DWS RQIS)	High to very high	> SASS5 AS	a shows values are variah	le but with a g	enerally				
PEMC (Kleynhans 1	999)	В	decreasing	trend evident, indicating e	xisting impact on the macro-i	invertebrate commu	inity in the system;			
DEMC (Kleynhans 1	999)	В	 Biomonitor 	ing data suggest existing in	npact on the Groot Dwars Ri	ver. Additional expansion	ansion may potentially res	ult in increased	l risk of	
PES (DWS RQIS)		D	impact, wit	impact, with specific reference to risk of spills from dirty water systems (elevated EC, risk of sedimentation).						
REC (DWS 2016, RC	(US)	C/D	l eleccifications		- Ovelity Objectives (DOO			2040)		
The Ecostatus Cate	gory for the IHI, Da	lias (2007) and MIRA	i classifications	comply with the Resourc	e Quality Objectives (RQO	s) of the Olifants	River catchment (DWS, 1	2016).		

NA = Not Applicable, SASS reference score = 205, ASPT reference score = 7.0

Table 24: Temporal variations observed at site T1 since the baseline assessment in July 2010.

Table 25: Riparian Vegetation Response Assessment Index (VEGRAI) and Fish Response Assessment Index (FRAI) results

VEGRAI						FRAI
Application of the VEG	RAI tool yielde	d the follow	ng result:			Fish species expected to occur in the system were presented in Section 2.2.2. Specific
LEVEL 3 ASSESSMENT						mention must be made of the potential presence of two near threatened fish taxa in this
METRIC GROUP	CALCULATED RATING	WEIGHTED RATING	CONFIDENCE	RANK	% WEIGHT	section of the Groot Dwars River: <i>Enteromius motebensis</i> , and <i>Oreochromis mossambicus</i> . Details on justification of the IUCN red data list status was provided in a footnote in Section 2.2.2.
MARGINAL	73.3	40.7	3.3	1.0	100.0	The following fish species were collected or observed during the biomonitoring
NON MARGINAL	73.3	32.6	3.3	2.0	80.0	Enteromius trimaculatus
	2.0				180.0	Enteromius unitaeniatus
LEVEL 3 VEGRAI (%)				73.3		Chiloglanis pretoriae
VEGRAI EC				С		Labeobarbus marequensis Tilania sparmani
AVERAGE CONFIDENCE				3.3		
					-	Application of the FRAI tool yielded the following result:
						FRAI (%) 49.3
						FRAI EC D
						The Ecostatus Category for the FRAI classification complies with the Resource Quality Objectives (RQO's) of the Olifants River catchment (DWS, 2016). See Section 2.2.3.

Ecostatus desktop assess	Ecostatus desktop assessment data summary					Biomonitoring assessment results summary				
Criteria	Kleynhans 1999	DWS RQIS database	Olifants Resource Quality Objectives	Criteria	Ecological Category classification achieved for the following sites as well as overall rating for the Groot Dwars River:					
			(DWS 2016)		GD2	GD3	GD4	GD5	Overall	
Applicable catchment/sub- quaternary catchment	B41G	B418-00674	B41G B41K	SASS5	С	E/F	D	E/F	D	
EIS	High	-	-	MIRAI	С	D	D	D	D	
Mean El class	•	High	-							
Mean ES class	•	Very High	-	Instream IHI	В	В	B/C	В	В	
PEMC	Class B: Largely natural	-	-							
PES	•	D (Largely modified)	-	Riparian IHI	В	С	С	С	С	
DEMC	Class B: Sensitive system	-	-							
Default EC	•	A	-	FRAI	-	-	-	-	D	
REC	•		C*							
			D**	VEGRAI	-	-	-	-	С	
Ecological Integration Tool result***						65.15	С			

Table 26: Summary data table for assessment of the Groot Dwars River with available ecostatus data comparisons

EIS = Ecological Importance and Sensitivity; PEMC = Present Ecological Management Class; DEMC = Desired Ecological Management Class; PES = Present Ecological State; confirmed in database that assessments were performed by expert assessors; EI = Ecological Importance; ES = Ecological Sensitivity; EC = Ecological Category; default based on median PES and highest of EI or ES means; REC = Recommended Ecological Category * Upper reaches of Groot Dwars River before mining impact;

** Klein Dwars River at the confluence with the Groot Dwars River, also the REC for the Steelpoort River in this catchment of the Olifants River. Corresponds with PES of the Groot Dwars as per DWS RQIS database.

*** The mean MIRAI score for sites GD2 to GD5 (56.0), as well as the FRAI (49.3) and VEGRAI (73.3) scores calculated for the Groot Dwars River, was employed in this calculation.

Table 27: Summary data table for assessment of the Mareesburg Spruit that confluences with the Groot Dwars River just above GD5

Site	SASS5	MIRAI	Instream IHI	Riparian IHI	
T1	E/F	D	В	С	

5. ECOLOGICAL IMPORTANCE AND SENSITIVITY ASSESSMENT

The Ecological Importance and Sensitivity (EIS) method (DWAF, 1999) was applied to the Groot Dwars River in order to ascertain the current sensitivity and importance of the system. The results of the assessment are presented in the table below:

Table 28: Results of the EIS assessment for the Groot Dwars River within the study are
--

Biotic Determinants	Score
Rare and endangered biota	3
Unique biota	3
Intolerant biota	3
Species/taxon richness	3
Aquatic Habitat Determinants	-
Diversity of aquatic habitat types or features	4
Refuge value of habitat type	3
Sensitivity of habitat to flow changes	3
Sensitivity of flow-related water quality changes	3
Migration route/corridor for instream and riparian biota	2
Nature Reserves, Natural Heritage sites, Natural areas, PNEs	1
RATINGS	2.8
EIS CATEGORY	High

The Ecological Importance and Sensitivity Assessment analysis of the Groot Dwars River provided a score of 2.8 which is regarded as **important and sensitive**. Quaternaries/delineations that obtain this score are considered to be unique on a national scale based on their biodiversity. These rivers (in terms of biota and habitat) may be sensitive to flow modifications.

The high importance and sensitivity of the river is mainly as a result of the presence of the unique biota known to occur in the area based on available databases (DWS RQIS PES/EIS database). Fish taxa known to be sensitive (high water quality and pristine habitat requirements) include *Amphilius uranoscopus, Labeobarbus marequensis* and *Chiloglanis pretoriae*. In addition, two near threatened red data list fish species, according to the IUCN occur in the area based on desktop assessments, namely *Enteromius motebensis* and *Oreochromis mossambicus* (see Sections 2.2.2 and Section 4, Table 25).

Sensitive (intolerant) invertebrate taxa that may potentially occur in the area based on desktop assessment include Athericidae, Chlorocyphidae, Heptageniidae, Perlidae, Philopotamidae and Psephenidae. The presence of sensitive/intolerant biota, diversity of aquatic habitat types as well as the sensitivity of the habitat to flow changes, added to the high importance and sensitivity rating.

6. IMPACT ASSESSMENT

Please refer to Section C for the results of the integrated impact assessment undertaken for both the aquatic and freshwater (riparian) resources associated with the proposed Der Brochen expansion project. Section C also indicates the required mitigatory measures needed to minimise the perceived impacts of the proposed development on these resources and presents an assessment of the significance of the impacts taking into consideration the available mitigatory measures and assuming that they are fully implemented.

7. CONCLUSION

During this aquatic ecological assessment, results from the existing biomonitoring program (biomonitoring data for the period April 2007 to December 2017) were considered, as the assessment sites were also applicable to the proposed expansion. The available biomonitoring data allowed adequate assessment of the PES and EIS of the system. Said results largely support the desktop study results. Despite the current PES, the EIS is considered high to very high (Kleynhans 1999 and DWS RQIS database), with a very high EIS rating also achieved during the current assessment. The Groot Dwars River is considered to be unique on a national scale based on biodiversity, with biota and habitat sensitive to flow and habitat modifications.

Biomonitoring assessment results summary:						
Criteria	Ecological Category classification achieved for the following sites:					
	GD2	GD3	GD4	GD5	Overall for the Groot Dwars River	T1 unnamed tributary on Mareesburg farm*
SASS5	С	E/F	D	E/F	D	E/F
MIRAI	С	D	D	D	D	D
Instream IHI	В	В	B/C	В	В	В
Riparian IHI	В	С	С	С	C	С
FRAI	-	-	-	-	D	NA
VEGRAI	VEGRAI C					
Ecological Integration Tool result				C		
Ecological Importance and Sensitivity Assessment				High		

The results of the aquatic ecological assessment based on biomonitoring program data as described previously, as well as relevant desktop data, is provided below:

* The tributary will be referred to as "Mareesburg Spruit" for the purpose of this report

The results for relevant desktop data, is provided below:

Desktop assessment result summary:				
Desktop EIS (Kleynhans 1999, DWS RQIS)	High to Very High			
Desktop PEMC (Kleynhans 1999)	В			
Desktop DEMC (Kleynhans 1999)	В			
Desktop PES (DWS RQIS)	D			
Desktop REC (DWS 2016)	C/D			

NA = Not applicable; EIS = Ecological Importance and Sensitivity; PEMC = Present Ecological Management Class; DEMC = Desired Ecological Management Class; PES = Present Ecological State; confirmed in database that assessments were performed by expert assessors; EI = Ecological Importance; ES = Ecological Sensitivity; EC = Ecological Category; default based on median PES and highest of EI or ES means; REC = Recommended Ecological Category.

Water Quality and Toxicological Hazard Considerations:

Groot Dwars River: As also defined in the existing biomonitoring program, site GD5 is used to indicate the level of aquatic ecological integrity after the cumulative effects, if any, of the existing Der Brochen project on the Groot Dwars River as well as other mining activities and the effects of the Der Brochen dam further upstream. Monitoring results (temporal and spatial comparisons of percentage change in values) at this site indicate a potential impact on water quality [increased Electrical Conductivity (EC) in a downstream direction] from existing mining activities. Specifically, potential impact from the existing Mototolo concentrator on salt load (compounded by potential impacts from upstream pollution sources and geological variation) was noted at site GD4. Although all absolute values complied with expected/natural water quality ranges during the most recent aquatic biomonitoring assessment, data suggest that increased EC will also be a likely compounding risk with reference to the planned expansion activities and changes from the baseline conditions will continue to occur. Process water systems associated with the existing Mototolo concentrator, based on available historical data, poses a significant toxicological hazard to the receiving environment. Results varied seasonally, but risk ranged between a no acute hazards (Class 1) to a high acute hazard (Class 4). Over the same period the conditions in the Groot Dwars River posed a slight acute (Class 2) to acute (Class 3) hazard. Although already impacted, any potential spills or overflow from dirty water areas are likely to have negative impact in terms of both water quality (notably elevated EC), as well as a toxicological hazard impact on aquatic biota in the Groot Dwars River. It is anticipated that process water systems associated with the planned concentrator, as well as any other dirty water areas associated with the proposed mining operation expansion, will pose a similar threat (i.e. potential cumulative impact).

Mareesburg Spruit: Slightly elevated EC was observed at site T1 (Mareesburg Spruit subjected to potential cumulative impacts from surrounding agricultural and mining activities, confluences with the Dwars River just above the GD5 site), which could potentially also

contribute to salt loading of the Groot Dwars River at site GD5. As was also stated for the Groot Dwars River above, the proposed expansion infrastructure will likely contribute to a cumulative salt loading risk in the system.

Aquatic Biota Considerations:

Available biomonitoring data indicate that the macro-invertebrate community diversity and sensitivity decreases in a downstream direction on the Groot Dwars River. The observed decrease is likely related to slight variation in water quality (notably EC) to which the existing Der Brochen operations, Mototolo Concentrator, as well as other mining activities further upstream. The proposed expansion will result in cumulative risk with reference to water quality impact (salt loading and toxicological hazard described above) and habitat impacts (risk of sedimentation in case of spillages described above), with potential direct and indirect negative impact on aquatic communities.

PES/EIS status:

The Ecostatus Categories for the Index of Habitat Integrity (IHI) and the Macro-Invertebrate Response Assessment Index (MIRAI) classifications for all of the Groot Dwars River sites are congruent with the Resource Quality Objectives (RQO's) of the Olifants River catchment (Ecological Category C/D, DWS, 2016). As mentioned previously, this is a "working river" and hence existing impact can be anticipated.

Most important risks identified based on aquatic ecological assessment:

Risk of impact on the Groot Dwars River thus pertains predominantly to potential spillages or overflow (from process water systems and other dirty water areas), leaching (from waste rock dumps or mining shaft complexes), decant (from shafts following closure) and run-off (from disturbed surfaces, hard surfaces and other proposed mining infrastructure), depending on phase of proposed development. Potential impact pertains to changes in water quality, as well as impact from sedimentation and settling of fine tailings. With reference to water quality, the specific risk of elevated EC based on historical data has been highlighted, as has toxicological hazards posed by dirty water systems. With reference to sedimentation and tailing deposits, potential direct and indirect effects are applicable.

Aquatic ecological assessment synopsis:

Existing biomonitoring data shows that the existing mining infrastructure do have an impact on the system. Should the planned expansion proceed, addition of similar infrastructure will likely lead to similar impacts (or risks thereof), potentially resulting in a cumulative effect. Should the expansion project proceed, very good mitigation is required to prevent and

minimise potential impacts on the receiving environment, in line with the requirements of the mitigation hierarchy (prevention, reduction, remediation and compensation) as advocated by the Department of Environmental Affairs.

Impact Assessment:

Following the assessment of the freshwater resources, an impact assessment was undertaken in order to ascertain the significance of perceived impacts associated with the proposed activities on the receiving environment. The results of this assessment are contained in Section C (*Freshwater Resource and Aquatic Ecological Assessment for the Proposed Anglo Platinum Der Brochen Project, Limpopo Province. Section C: Integrated Impact Assessment and Mitigation. SAS, 2018*).

Based on the findings of the ecological assessment and results of the impact assessment, it is the opinion of the ecologist that the proposed expansion project carries the potential to pose a significant risk to the Groot Dwars River, pertaining mostly water quality (notably elevated EC) and sedimentation impacts on both aquatic habitat and biota. Risks pertain mostly to altered flow patterns with associated run-off, erosion and sedimentation as well as spillage/leaching/decant. However, should careful planning of the positioning and layout of the proposed infrastructure take into account the locations of the drainage lines, with appropriate measures to prevent or manage spillage/leaching/decant and run-off, impact significance can be greatly reduced. Furthermore, the adherence to cogent, well-conceived mitigation measures as well as general good construction practice will aid in reducing the impact significance to acceptable levels.

However, it should be noted that the significance of some risks, such as possible decant from the shafts, leaching from various stockpiles and loss of catchment yield could not be accurately assessed since the relevant specialist studies had not been completed at the time of this assessment, and accurate layout diagrams are currently not available.

Taking the above into account, it is therefore the opinion of the specialist that from an aquatic ecological perspective, the proposed expansion project be carefully considered, and that preferably, further development and refinement of the site layout plans takes place before the project is authorised.

8. **RECOMMENDATIONS**

To avoid repetition, recommended mitigation measures were provided as part of the Environmental Impact Assessment. The reader is thus referred to Section C.

9. REFERENCES

- Chutter, F. M. (1998). Research on the rapid biological assessment of water quality impacts in streams and rivers. Report to the water research commission by Environmentek, CSIR, and WRC report No 422/1/98. Pretoria: Government printer.
- Dallas, H. F. (2007). River Health Programme: South African Scoring System (Sass) Data Interpretation Guidelines; Department of Water Affairs and Forestry.
- Department of Water Affairs and Forestry. (1996). South African water quality guidelines vol. 7, Aquatic ecosystems
- Department of Water Affairs and Forestry. (1999). Resource Directed Measures for Protection of Water Resources; Volume 3: River Ecosystems Version 1.0 (Revised Water Quality Methodology).
- Department of Water and Sanitation. (2016). Classes and Resource Quality Objectives of Water Resources for the Olifants Catchment. Government Gazette 39943:546, April 2016. Regulation Gazette No. 466.
- Department of Water and Sanitation (DWS). (2014). A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: X2 and X3 Compiled by RQIS-RDM: Online available: <u>https://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx</u> as retrieved in September 2017
- Dickens, C. W. S. and Graham, P. M., (2002). The South African Scoring System (SASS) Version 5 Rapid bioassessment method for rivers. African Journal of Aquatic Science; 27: 1-10.
- Kemper, N. (1999). Intermediate Habitat Integrity assessment for use in rapid and intermediate assessments. RDM Manual version 1.0.
- Kleynhans, C.J. (1996). A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River. Journal of Aquatic Ecosystem Health 5: 41-54.
- Kleynhans C.J. (1999). A procedure for the determination of the ecological reserve for the purposes of the national water balance model for South African River. Institute of Water Quality Studies, Department of Water Affairs & Forestry, Pretoria.
- Kleynhans CJ. (2007). *Module D: Fish Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2).* Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT330/08.
- Kleynhans C.J, Louw M.D. (2007). Module A: EcoClassification and EcoStatus determination in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No.
- Kleynhans CJ, MacKenzie J, Louw MD. (2007). *Module F: Riparian Vegetation Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2).* Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT 333/08.
- Kleynhans CJ, Louw MD, Graham M, (2008). Module G: EcoClassification and EcoStatus determination in River EcoClassification: Index of Habitat Integrity (Section 1, Technical manual) Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT 377-08.
- McMillan, P. H. (1998): An integrated habitat assessment system (IHAS v2) for the rapid biological assessment of rivers and streams. A CSIR research project. Number ENV-P-I 98132 for the water resources management programme. CSIR. ii +44 pp
- National Environmental Management Act (NEMA) 107 of 1998.

National Water Act 36 of 1998. Section 21(c) and (i).

Ollis, D.J., Boucher, C., Dallas, H.F. and Esler, K. (2006). Preliminary testing of the integrated habitat assessment system (IHAS) for aquatic macroinvertebrates. Southern Africa Journal of Aquatic Science **31** (1) 1-14.

- Palmer, C. & N. Rossouw, (2001): Olifants River Ecological Water Requirements Assessment: Water Quality, Report to the Department of Water Affairs and Forestry (DWAF), Report No PB 000 00 5999.
- Skelton, P. H. (2001). A complete guide to freshwater fishes of Southern Africa. Southern Book Publishers (Pty) Ltd., Halfway House. 388pp.
- Steffen, Roberts and Kirsten (SRK). Environmental Management Program Report for the Der Brochen Mine: November 2002. Report No 295606/4/Der Brochen
- Thirion, C, Mocke, A. M, and Woest, R (1995) Biological Monitoring of Streams and Rivers using SASS4: A User Manual. Internal Report No. 0000/00/REQ/1195 Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria, South Africa.
- Thirion, C. (2007). Module E: Macroinvertebrate Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No.

APPENDIX A - Terms of Use and Indemnity

INDEMNITY AND TERMS OF USE OF THIS REPORT

The findings, results, observations, conclusions and recommendations given in this report are based on the author's best scientific and professional knowledge as well as available information. The report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken and SAS CC and its staff reserve the right to modify aspects of the report including the recommendations if and when new information may become available from ongoing research or further work in this field, or pertaining to this investigation. Although SAS CC exercises due care and diligence in rendering services and preparing documents, SAS CC accepts no liability and the client, by receiving this document, indemnifies SAS CC and its directors, managers, agents and employees against all actions, claims, demands, losses, liabilities, costs, damages and expenses arising from or in connection with services rendered, directly or indirectly by SAS CC and by the use of the information contained in this document.

This report must not be altered or added to without the prior written consent of the author. This also refers to electronic copies of this report which are supplied for the purposes of inclusion as part of other reports, including main reports. Similarly, any recommendations, statements or conclusions drawn from or based on this report must make reference to this report. If these form part of a main report relating to this investigation or report, this report must be included in its entirety as an appendix or separate section to the main report.

APPENDIX B - Legislation

Mineral and Petroleum Resources Development Act (MPRDA) (Act 28 of 2002)	The obtaining of a New Order Mining Right (NOMR) is governed by the MPRDA. The MPRDA requires the applicant to apply to the DMR for a NOMR which triggers a process of compliance with the various applicable sections of the MPRDA. The NOMR process requires environmental authorisation in terms of the MPRDA Regulations and specifically requires the preparation of a Scoping Report, an Environmental Impact Assessment (EIA) and Environmental Management Programme (EMP), and a Public Participation Process (PPP).
National Environmental Management Act (NEMA) (Act No. 107 of 1998)	The National Environmental Management Act (NEMA) (Act 107 of 1998) and the associated Regulations as amended in 2017, states that prior to any development taking place within a wetland or riparian area, an environmental authorisation process needs to be followed. This could follow either the Basic Assessment Report (BAR) process or the Environmental Impact Assessment (EIA) process depending on the scale of the impact. Provincial regulations must also be considered.
National Water Act (NWA) (Act No. 36 of 1998)	The National Water Act (NWA) (Act 36 of 1998) recognises that the entire ecosystem and not just the water itself in any given water resource constitutes the resource and as such needs to be conserved. No activity may therefore take place within a watercourse unless it is authorised by the Department of Water and Sanitation (DWS). Any area within a wetland or riparian zone is therefore excluded from development unless authorisation is obtained from the DWS in terms of Section 21 (c) & (i).
General Notice 509 as published in the Government Gazette 40229 of 2016 as it relates to the NWA (Act 36 of 1998)	 In accordance with Regulation GN509 of 2016, a regulated area of a watercourse for section 21c and 21i of the NWA, 1998 is defined as: a) The outer edge of the 1 in 100 year flood line and/or delineated riparian habitat, whichever is the greatest distance, measured from the middle of the watercourse of a river, spring, natural channel, lake or dam; b) In the absence of a determined 1 in 100 year flood line or riparian area the area within 100 m from the edge of a watercourse where the edge of the watercourse is the first identifiable annual bank fill flood bench; or c) A 500 m radius from the delineated boundary (extent) of any wetland or pan. This notice replaces GN1199 and may be exercised as follows: i) Exercise the water use activities in terms of Section 21(c) and (i) of the Act as set out in the table below, subject to the conditions of this authorisation; ii) Use water in terms of section 21(c) or (i) of the Act if it has a low risk class as determines through the Risk Matrix; iii) Do maintenance with their existing lawful water use in terms of section 21(c) or (i) of the Act as a determined through the Risk Matrix; iv) Conduct river and stormwater management activities as contained in a river management plan; v) Conduct rehabilitation of wetlands or rivers where such rehabilitation activities has a LOW risk class as determined through the Risk Matrix; and vi) Conduct emergency work arising from an emergency situation or incident associated with the persons' existing lawful water use, provided that all work is executed and reported in the manner prescribed in the Emergency protocol.

	monitoring and reporting programme. Furthermore, the water user must ensure that there is a sufficient budget to complete, rehabilitate and maintain the water use as set out in this GA.
	Upon completion of the registration, the responsible authority will provide a certificate of registration to the water user within 30 working days of the submission. On written receipt of a registration certificate from the Department, the person will be regarded as a registered water user and can commence within the water use as contemplated in the GA.
GN 704 – Regulations on use of water for mining and related activities aimed at the protection of water resources, 1999	These regulations, forming part of the National Water Act, were put in place in order to prevent the pollution of water resources and protect water resources in areas where mining activity is taking place from impacts generally associated with mining.
	It is recommended that the project complies with Regulation GN 704 of the NWA, 1998 (Act no. 36 of 1998) which contains regulations on use of water for mining and related activities aimed at the protection of water resources. GN 704 states that: No person in control of a mine or activity may: (a) locate or place any residue deposit, dam, reservoir, together with any associated structure or any other facility within the 1:100 year floodline or within a horizontal distance of 100 metres (m) from any watercourse or estuary, borehole or well, excluding boreholes or wells drilled specifically to monitor the pollution of groundwater, or on waterlogged ground, or on ground likely to become waterlogged, undermined, unstable or cracked;
	According to the above, the activity footprint must fall outside of the 1:100 year floodline of the drainage feature or 100m from the edge of the feature, whichever distance is the greatest, unless authorised by DWS.

APPENDIX C - Method of Assessment

The sections that follow describe the methodology used to assess the aquatic ecological integrity of the various sites based on water quality, instream and riparian habitat conditions and biological impacts and integrity.

Water resources are generally classified according to the degree of modification or level of impairment. The classes used by the South African River Health Program (RHP) are presented in the table below and will be used as the basis of classification of the systems in the study area.

 Table 2A: Classification of river health assessment classes in line with the RHP (Kleynhans, 1999).

Class	Description
Α	Unmodified, natural.
В	Largely natural, with few modifications.
С	Moderately modified.
D	Largely modified.
E	Seriously modified.
F	Critically modified.

In addition, the ecological category (EC) classification will be employed using the eco-status A to F continuum approach (Kleynhans and Louw 2007). This approach allows for boundary categories denoted as B/C, C/D etc., as illustrated in Figure 2A.

Figure 2A: Ecological categories (EC) eco-status A to F continuum approach employed (Kleynhans and Louw 2007).

Visual Assessment

Each site was investigated in order to identify visible impacts on the site, with specific reference to impacts from surrounding activities and any effects from the Der Brochen, Mototolo or Richmond projects. Both natural constraints placed on ecosystem structure and functions as well as anthropogenic alterations to the system were assessed by observing conditions and relating them to professional experience.

Photographs of each site were taken to provide visual indications of the conditions at the time of assessment. Factors which were noted in the site specific visual assessments included the following:

- Stream morphology;
- Instream and riparian habitat diversity;
- Stream continuity;
- Erosion potential;
- > Depth flow and substrate characteristics;
- Signs of physical disturbance of the area;
- > Other life forms reliant on aquatic ecosystems; and
- > Signs of impact related to water quality.

Physico Chemical Water Quality Data

On-site testing of biota specific water quality variables took place at the biomonitoring sites. Parameters measured include pH, Electrical Conductivity (EC), Dissolved Oxygen (DO) concentration and temperature. The results of on-site biota specific water quality analyses were used to aid in the interpretation of the data obtained by the biomonitoring. Results are discussed against the guideline water quality values for aquatic ecosystems as defined by the Department of Water and Sanitation (DWS) formerly known as the Department of Water and Forestry (DWAF 1996 vol. 7), the Olifants River Ecological Water Requirement Assessment (OREWRA, 2001) and the Resource Quality Objectives (RQO) for the Olifants Catchment (DWS, 2016).

General Habitat Integrity

The general habitat integrity of each site was discussed based on the application of the Index of Habitat Integrity (Kleynhans *et al.* 2008). It is important to assess the habitat at each site, in order to aid in the interpretation of the results of the community integrity assessments, by taking habitat conditions and impacts into consideration. This method describes the Present Ecological State (PES) of both the instream and riparian habitat at each site. The method classifies habitat integrity into one of six classes, ranging from unmodified/natural (Class A) to critically modified (Class F), as indicated in Table 2B below.

Table 2B: Classification of Present State Classes in terms of Habitat Integrity [Kleynhans *et al.* 2008].

Class	Description	Score (% of total)
Α	Unmodified, natural.	90 - 100
В	Largely natural with few modifications. The flow regime has been only slightly modified and pollution is limited to sediment. A small change in natural habitats may have taken place. However, the ecosystem functions are essentially unchanged.	80 - 89
С	Moderately modified. Loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged.	60 - 79
D	Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred.	40 – 59
E	Seriously modified. The loss of natural habitat, biota and basic ecosystem functions is extensive.	20 – 39
F	Critically / Extremely modified. Modifications have reached a critical level and the system has been modified completely with an almost complete loss of natural habitat and biota. In the worst instances, the basic ecosystem functions have been destroyed and the changes are irreversible.	0 - 19

The Riparian Vegetation Response Assessment Index (VEGRAI)

VEGRAI is designed for qualitative assessment of the response of riparian vegetation to impacts in such a way that qualitative ratings translate into quantitative and defensible results (Kleynhans et al., 2007b). Results are defensible because their generation can be traced through an outlined process (a suite of rules that convert assessor estimates into ratings and convert multiple ratings into an Ecological Category).

Riparian vegetation is described in the National Water Act (NWA; Act 36 of 1998) as follows: 'riparian habitat' includes the physical structure and associated vegetation of the areas associated with a watercourse which are commonly characterised by alluvial soils, and which are inundated or flooded to an extent and with a frequency sufficient to support vegetation of species with a composition and physical structure distinct from those of adjacent land areas.

Ecological category	Description	Score (% of total)
А	Unmodified, natural.	90-100
В	Largely natural with few modifications. A small change in natural habitat and biota may have taken place but the ecosystem functions are essentially unchanged.	80-89
С	Moderately modified. Loss and change of natural habitat have occurred, but the basic ecosystem functions are still predominately unchanged.	60-79
D	Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred.	40-59
E	Seriously modified. The loss of natural habitat, biota and basic ecosystem functions is extensive.	20-39
F	Critically modified. Modifications have reached a critical level and the lotic system has been modified completely with an almost complete loss of natural habitat and biota. In the worst instances, the basic ecosystem functions have been destroyed and the changes are irreversible	0-19

Table C2: Descriptions of the A-F ecological categories.

Habitat for aquatic macro-invertebrates

The Invertebrate Habitat Assessment System (IHAS) was applied according to the protocol of McMillan (1998). This index was used to determine specific habitat suitability for aquatic macro-invertebrates as well as to aid in the interpretation of the results of the South African Scoring System version 5 (SASS5) scores. However, according to a study conducted within the Mpumalanga and Western Cape regions, the IHAS method does not produce reliable scores with regard to the suitability of habitat at sampling sites for aquatic macroinvertebrates (Ollis *et al.*, 2006). Furthermore, the performance of the IHAS seems to vary between geomorphologic zones and between biotope groups (Ollis *et al.*, 2006). It has, however; become clear that IHAS requires further validation and testing, although the basic data remains of value (Thirion, 2007).

Table 2C:	IHAS S	Scores	and their	corresponding	description	of overall	condition	(quality	and
quantity)	of availa	able aqu	uatic mac	roinvertebrate h	abitat (McMi	llan, 1998)			

IHAS Score (%)	Description
>75	Excellent
65 – 74	Good
55 – 64	Adequate / Fair
<55	Poor

Aquatic Macro-Invertebrate Integrity: The South African Scoring System version 5 (SASS5)

Aquatic macro-invertebrate communities of the selected sites were investigated according to the method, which is specifically designed to comply with international accreditation protocols. This method is based on the British Biological Monitoring Working Party (BMWP) method and has been adapted for South African conditions by Dr. F. M. Chutter (1998).

The assessment was undertaken according to the protocol as defined by Dickens & Graham (2002). All work was undertaken by an accredited SASS5 practitioner.

Interpretation of the results of biological monitoring depends, to a certain extent, on interpretation of site-specific conditions (Thirion *et.al*, 1995). In the context of this investigation it would be best not to use SASS5 scores in isolation, but rather in comparison with relevant habitat scores. The reason for this is that some sites have a less desirable habitat or fewer biotopes than others do. In other words, a low SASS5 score is not necessarily regarded as poor in conjunction with a low habitat score. Also, a

high SASS5 score in conjunction with a low habitat score can be regarded as better than a high SASS5 score in conjunction with a high habitat score. A low SASS5 score together with a high habitat score would be indicative of poor conditions. The IHAS Index is valuable in helping to interpret SASS5 scores and the effects of habitat variation on aquatic macro-invertebrate community integrity.

The perceived reference state for the local streams was determined as a SASS5 score of 205 and an ASPT of 7, based on general conditions of streams in the Eastern Bankenveld Ecoregion and local habitat conditions.

Interpretation off SASS5 results was also carried out based on the South African Scoring System (SASS) data interpretation guidelines (Dallas, 2007). Data from the Eastern Bankenveld Ecoregion was used to aid in interpretation (Figure 2B).

Figure 2B: SASS5 Classification using biological bands calculated from percentiles for the Eastern Banenveld Ecoregion (Upper zones).

Aquatic Macro-Invertebrate Integrity: The Macro-invertebrate Response Assessment Index (MIRAI)

The four major components of a stream system that determine productivity, with particular reference to aquatic organisms, are flow regime, physical habitat structure, and water quality and energy inputs. An interplay between these factors (particularly habitat and availability of food sources) result in the discontinuous, patchy distribution pattern of aquatic macro-invertebrate populations. As such aquatic invertebrates shall respond to habitat changes (i.e. changes in driver conditions).

To relate drivers to such changes in habitat and aquatic invertebrate condition, two key elements are required. Firstly, habitat preferences and requirements for each taxa present should be obtained. As such reference conditions can be established against which any response to drivers can be measured. Secondly habitat features should be evaluated in terms of suitability and the requirements mentioned in the first point. As a result, expected and actual patterns can be evaluated to achieve an Ecostatus Category rating.

Based on the three key requirements, the MIRAI provides an approach to deriving and interpreting aquatic invertebrate response to driver changes. The index has been applied to the sites following methodology described by Thirion (2007). Aquatic macro-invertebrates expected at each point were derived both from previous studies of rivers near the area as well as habitat, flow and water parameters (Thirion, 2007).

Fish biota: Fish Response Assessment Index (FRAI)

The FRAI (Kleynhans, 2007) is based on the premise that "drivers" (environmental conditions) may cause fish stress which shall then manifest as changes in fish species assemblage. The index employs preferences and intolerances of the reference fish assemblage, as well as the response of the actual (present) fish assemblage to particular drivers to indicate a change from reference conditions. Intolerances and preferences are divided into metric groups relating to preferences and requirements of individual species. This allows cause-effect relationships to be understood, i.e. between drivers and responses of the fish assemblage to changes in drivers. These metric groups are subsequently ranked, rated and finally integrated as a fish Ecological Category.

The fish community of each site was sampled for a period of twenty minutes by means of a battery operated electro-fishing device. Fish species identified were compared to those expected to be present at the sites, which were compiled from a literature survey from Skelton (2001) and the Reference Frequency of Occurrence of Fish Species in South Africa (Kleynhans, et al., 2007c). Fish expected to occur in the system is summarised in Section 2.2.3. Comparisons between upstream and downstream points were made where applicable.

Ecological Importance and Sensitivity (EIS) Method of assessment

The EIS method considers a number of biotic and habitat determinants surmised to indicate either importance or sensitivity. The determinants are rated according to a four-point scale (Table C4). The median of the resultant score is calculated to derive the EIS category (Table C5).

Table C5: Definition of the four-point scale used to assess biotic and habitat determinants

presumed to indicate either importance or sensitivity

Four point scale	Definition
1	One species/taxon judged as rare or endangered at a local scale.
2	More than one species/taxon judged to be rare or endangered on a local scale.
3	One or more species/taxon judged to be rare or endangered on a Provincial/regional scale.
4	One or more species/taxon judged as rare or endangered on a National scale (i.e. SA Red Data
	Books)

Table C6: Ecological importance and sensitivity categories (DWAF, 1999)

EISC	General Description	Range of median
Very high	Quaternaries/delineations that are considered to be unique on a national and international level based on unique biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) are usually very sensitive to flow modifications and have no or only a small capacity for use.	>3-4
High	Quaternaries/delineations that are considered to be unique on a national scale based on their biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) may be sensitive to flow modifications but in some cases may have substantial capacity for use.	>2-≤3
Moderate	Quaternaries/delineations that are considered to be unique on a provincial or local scale due to biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) are not usually very sensitive to flow modifications and often have substantial capacity for use.	>1-≤2
Low/ marginal	Quaternaries/delineations that are not unique on any scale. These rivers (in terms of biota and habitat) are generally not very sensitive to flow modifications and usually have substantial capacity for use.	≤1

APPENDIX D – Results of Field Investigation (Scoresheets)

Site GD2

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
pН	0.0	HYDROLOGY RATING	0.9
Salts	0.0	Substrate Exposure (marginal)	1.0
Nutrients	-2.0	Substrate Exposure (non-marginal)	1.0
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	0.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	0.0	Erosion (marginal)	1.0
Toxics	0.0	Erosion (non-marginal)	1.0
PC RATING	0.5	Physico-Chemical (marginal)	1.0
Sediment	0.0	Physico-Chemical (non-marginal)	1.0
Benthic Growth	-2.0	Marginal	1.0
BED RATING	0.8	Non-marginal	1.0
Marginal	-1.5	BANK STRUCTURE RATING	1.0
Non-marginal	-0.5	Longitudinal Connectivity	0.5
BANK RATING	1.0	Lateral Connectivity	0.5
Longitudinal Connectivity	-1.0	CONNECTIVITY RATING	0.5
Lateral Connectivity	1.0		
CONNECTIVITY RATING	1.0	RIPARIAN IHI %	83.2
		RIPARIAN IHI EC	В
INSTREAM IHI %	85.8	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	В		
INSTREAM CONFIDENCE	3.0		

Site GD3

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
рН	0.0	HYDROLOGY RATING	0.9
Salts	0.0	Substrate Exposure (marginal)	1.0
Nutrients	-2.0	Substrate Exposure (non-marginal)	1.0
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	1.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	0.0	Erosion (marginal)	2.5
Toxics	0.0	Erosion (non-marginal)	2.5
PC RATING	0.5	Physico-Chemical (marginal)	0.5
Sediment	0.0	Physico-Chemical (non-marginal)	1.0
Benthic Growth	-2.0	Marginal	2.5
BED RATING	0.8	Non-marginal	2.5
Marginal	-2.0	BANK STRUCTURE RATING	2.5
Non-marginal	-1.0	Longitudinal Connectivity	1.5
BANK RATING	1.5	Lateral Connectivity	0.5
Longitudinal Connectivity	-1.0	CONNECTIVITY RATING	1.4
Lateral Connectivity	1.0		
CONNECTIVITY RATING	1.0	RIPARIAN IHI %	65.8
		RIPARIAN IHI EC	С
INSTREAM IHI %	84.6	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	В		
INSTREAM CONFIDENCE	3.0		

Site GD4

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
рН	-0.5	HYDROLOGY RATING	0.9
Salts	0.0	Substrate Exposure (marginal)	1.5
Nutrients	-2.0	Substrate Exposure (non-marginal)	1.5
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	1.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	0.0	Erosion (marginal)	2.0
Toxics	0.0	Erosion (non-marginal)	2.0
PC RATING	1.5	Physico-Chemical (marginal)	1.5
Sediment	0.0	Physico-Chemical (non-marginal)	1.0
Benthic Growth	-2.0	Marginal	2.0
BED RATING	0.8	Non-marginal	2.0
Marginal	-1.5	BANK STRUCTURE RATING	2.0
Non-marginal	-0.5	Longitudinal Connectivity	0.5
BANK RATING	1.0	Lateral Connectivity	0.5
Longitudinal Connectivity	-1.0	CONNECTIVITY RATING	0.5
Lateral Connectivity	-0.5		
CONNECTIVITY RATING	1.0	RIPARIAN IHI %	74.3
		RIPARIAN IHI EC	С
INSTREAM IHI %	81.5	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	B/C		
INSTREAM CONFIDENCE	3.0		

Site GD5

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
рН	0.0	HYDROLOGY RATING	0.9
Salts	0.0	Substrate Exposure (marginal)	1.5
Nutrients	1.0	Substrate Exposure (non-marginal)	1.5
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	1.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	0.0	Erosion (marginal)	2.0
Toxics	0.0	Erosion (non-marginal)	2.0
PC RATING	1.0	Physico-Chemical (marginal)	0.5
Sediment	0.0	Physico-Chemical (non-marginal)	0.5
Benthic Growth	1.0	Marginal	2.0
BED RATING	0.4	Non-marginal	2.0
Marginal	-0.5	BANK STRUCTURE RATING	2.0
Non-marginal	-1.5	Longitudinal Connectivity	0.5
BANK RATING	1.0	Lateral Connectivity	1.0
Longitudinal Connectivity	-0.5	CONNECTIVITY RATING	0.5
Lateral Connectivity	-0.5		
CONNECTIVITY RATING	0.5	RIPARIAN IHI %	74.1
		RIPARIAN IHI EC	С
INSTREAM IHI %	87.0	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	В		
INSTREAM CONFIDENCE	3.0		

Site T1

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
рН	0.0	HYDROLOGY RATING	0.9
Salts	-1.0	Substrate Exposure (marginal)	1.5
Nutrients	0.0	Substrate Exposure (non-marginal)	1.5
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	0.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	0.0	Erosion (marginal)	2.0
Toxics	0.0	Erosion (non-marginal)	2.0
PC RATING	1.0	Physico-Chemical (marginal)	0.5
Sediment	-1.0	Physico-Chemical (non-marginal)	1.0
Benthic Growth	0.0	Marginal	2.0
BED RATING	0.6	Non-marginal	2.0
Marginal	-2.0	BANK STRUCTURE RATING	2.0
Non-marginal	-0.5	Longitudinal Connectivity	1.5
BANK RATING	1.4	Lateral Connectivity	1.0
Longitudinal Connectivity	-1.0	CONNECTIVITY RATING	1.3
Lateral Connectivity	1.0		
CONNECTIVITY RATING	1.0	RIPARIAN IHI %	70.5
		RIPARIAN IHI EC	С
INSTREAM IHI %	83.4	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	В		
INSTREAM CONFIDENCE	3.0		

Site KD1

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
pH	0.0	HYDROLOGY RATING	0.9
Salts	0.0	Substrate Exposure (marginal)	1.5
Nutrients	0.0	Substrate Exposure (non-marginal)	1.5
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	0.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	0.0	Erosion (marginal)	2.0
Toxics	0.0	Erosion (non-marginal)	2.0
PC RATING	0.0	Physico-Chemical (marginal)	0.5
Sediment	-1.0	Physico-Chemical (non-marginal)	1.0
Benthic Growth	0.0	Marginal	2.0
BED RATING	0.6	Non-marginal	2.0
Marginal	-1.5	BANK STRUCTURE RATING	2.0
Non-marginal	-1.0	Longitudinal Connectivity	0.5
BANK RATING	1.3	Lateral Connectivity	0.5
Longitudinal Connectivity	-1.5	CONNECTIVITY RATING	0.5
Lateral Connectivity	-1.0		
CONNECTIVITY RATING	1.5	RIPARIAN IHI %	74.3
		RIPARIAN IHI EC	С
INSTREAM IHI %	86.7	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	В		
INSTREAM CONFIDENCE	3.0		

Site KD2

INSTREAM IHI		RIPARIAN IHI	
Base Flows	-1.0	Base Flows	-1.0
Zero Flows	0.0	Zero Flows	0.0
Floods	1.0	Moderate Floods	1.5
HYDROLOGY RATING	0.5	Large Floods	1.5
рН	0.0	HYDROLOGY RATING	0.9
Salts	0.0	Substrate Exposure (marginal)	1.5
Nutrients	0.0	Substrate Exposure (non-marginal)	1.5
Water Temperature	0.0	Invasive Alien Vegetation (marginal)	0.5
Water clarity	0.0	Invasive Alien Vegetation (non-marginal)	0.5
Oxygen	-0.5	Erosion (marginal)	2.0
Toxics	0.0	Erosion (non-marginal)	2.0
PC RATING	0.5	Physico-Chemical (marginal)	1.0
Sediment	-1.0	Physico-Chemical (non-marginal)	1.0
Benthic Growth	-0.5	Marginal	2.0
BED RATING	0.8	Non-marginal	2.0
Marginal	-1.0	BANK STRUCTURE RATING	2.0
Non-marginal	-1.0	Longitudinal Connectivity	1.0
BANK RATING	1.0	Lateral Connectivity	1.0
Longitudinal Connectivity	-1.5	CONNECTIVITY RATING	1.0
Lateral Connectivity	-1.0		
CONNECTIVITY RATING	1.5	RIPARIAN IHI %	72.1
		RIPARIAN IHI EC	С
INSTREAM IHI %	84.2	RIPARIAN CONFIDENCE	3.0
INSTREAM IHI EC	В		
INSTREAM CONFIDENCE	3.0		

INVERTEBRATE HABITAT ASSESSMENT	SYSTE	EM	(IHAS)				
River Name:							
Site Name: GD2		06-12-2017					
							_
SAMPLING HABITAT	0	-	1	2	3	4	5
Total length of white water rapids (i.e.: bubbling water) (in meters)	none		0-1	>1-2	>2-3	>3-5	>5
Total length of submerged stones in current (run) (in meters)	none		0-2	>2-5	>5-10	>10	
Number of separate SIC area's kicked (not individual stones)	0		1	2-3	4-5	6+	
A verage stone size's kicked (cm's) (gravel is <2, bedrock is >20)	none		<2>20	2-10	11-20	2-20	
Amount of stone surface clear (of algae, sediment, etc) (in %)*	n/a		0-25	26-50	51-75	>75	
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min) (* NOTE: up to 25% of stone is usually embedded in the stream bottom)	0		<1	>1-2	2	>2-3	>3
	SIC S	co	re (max)	20):	16		
VEGETATION	0		1	2	3	4	5
Length of fringing vegetation sampled (river banks) (PROTOCOL - in metore)	nono		0-14	_1/_1	<u>\1</u> 2	2	~2
Amount of aquatic vegetation sampled (underwater) (in square meters)	none		0-72	>1/21	>FZ		72
Finding vegetation compled in: ('atill' and of let in square instead)	none		0-72	>/21			miy
Tinging vegetation sampled in. (still = pool/still water only, run = run only)	none		0	1.25	26.50	E1 7E	1111X
Type of vegetation (% leary veg. As opposed to stems/shoots) (aq. veg. Only = 49%)	none	<u> </u>	0	F25	20-30	5 - 75	>15
	Vegetation Score (max 15): 11						
OTHER HABITAT/GENERAL	0		1	2	3	4	5
Stones out of current (SOOC) sampled: (PROTOCOL - in square meters)	none		0-1/2	>1/21	1	>1	
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	none		under	0-1/2	>1/21		>1
Mud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	none		under	0-1/2	1/2	>1/2	
Gravel sampled (PROTOCOL - in minutes) (if all gravel SIC stope size = <2)**	none		0-1/2	1/2	>1/2**		
Bedrock sampled: ('all' = no SIC sand or gravel then SIC stone size = >20)**	none		some	/1	- /2	all**	
A lose present: $('12m^2 = algal bed' 'rocks' = on rocks: 'isol' = isolated clumps)***$	>2m ²		rocks	1-2m ²	<1m ²	isol	none
Travidentification: (PROTOCOL - using time: 'coor' - correct time)	2 Em		under	12	corr	1001	over
(** NOTE: you must still fill in the SIC section)			under		011		over
	Other Habitat Score (max 20): 10						
		- •	T TOTA			27	
	HABI		TTOTA		55):	37	
STREAM CONDITION	0		1	2	3	4	5
PHYSICAL		_			renid	Omite	Omeiu
River make up: (pool = pool/still/dam only; run only, etc)	p001		. 10	run	rapid		JIIIX
A verage worn of stream: (in meters)			>10	>5-10	<		>2-5
A verage depth of stream: (in meters)	>2		>F2	r I	>//2	<u> 72</u>	2</td
Approximate velocity of stream: (slow = im/s) (use twig to test)	Still		SIOW	Tast	mea		mix
water colour: (disc = discoloured with visible colour but still transparent)	Slity		opaque		disc		clear
Recent disturbance due to: (const. = construction; ti/dr = flood or drought)	TIOOO		tire	constr	other		none
Bank/riparian vegetation is: (grass' = includes reeds; snrubs' = include trees)	none		,	grass	snrubs	mix	
Surro unding impacts: ('erosn' = erosion/shear bank; 'farm' = farmland/settlement)^^^	erosr	1	farm	trees	other		open
Left bank cover: (rocks and vegetation) (in %)	0-50		51-80	81-95	>95		
Right bank cover: (rocks and vegetation) (in %)	0-50		51-80	81-95	>95		
					1.1	_	1
	STRE	A١	I COND	ITIONS	TOTAL	(MAX 4	32
	TOTA	LI	HAS SC	ORE (%	6):	69	

INVERTEBRATE HABITAT ASSESSMENT	S	YSTEM	(IHAS)						
River Name:									
Site Name: GD3	0	Date:0	6-12-2017	_		_			
SAMPLING HARITAT	0	1	h	2	-	2	4	5	
STONES IN CURRENT (SIC)		U		t	2	-	3	4	5
Total length of white water rapids (i.e.: bubbling water) (in meters)		none	0-1	Γ	>1-2	>	2-3	>3-5	>5
Total length of submerged stones in current (run) (in meters)		none	0-2	Ľ	>2-5	>	5-10	>10	
Number of separate SIC area's kicked (not individual stones)		0	1	E	2-3	4	4-5	6+	
Average stone size's kicked (cm's) (gravel is <2, bedrock is >20)		none	<2>20	Ľ	2-10	11	1-20	2-20	
Amount of stone surface clear (of algae, sediment, etc) (in %)*		n/a	0-25	Ľ	26-50	5	1-75	>75	
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min) (* NOTE: up to 25% of stone is usually embedded in the stream bottom)		0	<1		>1-2		2	>2-3	>3
	e	SIC Sco	or <u>e (max</u>	20)):	16			
VEGETATION		0	1	Ļ	2	L	3	4	5
Length of fringing vegetation sampled (river banks) (PROTOCOL - in meters)	+	none	0-1/2	h	>1⁄~1	_ >	.1-2	2	>2
Amount of aquatic vegetation sampled (underwater) (in square meters)	+	none	0.1/2	F	>1/-1		<u>1</u>		~~
Fringing vegetation sampled in: ('still' – nool/still water only 'run' = run only)		none	0 /2	F	run		201		mix
This in y expectation is an product in the poly standard		none	0	F	1-25	26	3-50	51-75	>75
Type of vegetation (/meany veg. As opposed to stems should (aq. veg. only = 10 /m	+	TIONO	U	L	F20	-	5-00	5115	/10
	1	/egetat	ion Scor	e	<u>(max 1</u>	5):	2	9	
OTHER HABITAT/GENERAL		0	1	L	2	_	3	4	5
Stones out of current (SOOC) sampled: (PROTOCOL - in square meters)	+	none	0-1/2	r	> ¹ / 2 1		1	>1	
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)		none	under	ľ	0-1⁄2	>	1/ 2 1	1	>1
M ud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	T	none	under	F	0-1⁄2		1/2	>1/2	
Gravel sampled: (PROTOCOL - in minutes) (if all gravel, SIC stone size = <2)**	T	none	0-1/2	F	1/2	>	1/2**		
Bedrock sampled: ('all' = no SIC, sand, or gravel then SIC stone size = >20)**		none	some	F		F	/-	all**	
Algae present: ('1-2m ² = algal bed; 'rocks' = on rocks; 'isol' = isolated clumps)***		>2m²	rocks	Ē	1-2m ²	<	1m²	isol	none
Travidentification: (PROTOCOL - using time: 'coor' = correct time)		, <u> </u>	under	F		c	orr		over
(** NOTE: you must still fill in the SIC section)									
		5 (b a a 1 l	- 11 - 4 O		- 1				
)ther n	abitat St	:0	re (ma	IX 21): 	11	
	ŀ		<u> </u>	L	(<u>M A X</u>	<u>55)</u>	:	3 <u>6</u>	
		-		Ļ	_				
STREAM CONDITION	-	0	1	ŀ	2	-	3	4	5
River make up: ('pool' = pool/still/dam only; 'run' only; etc)		pool		Ľ	run	ra	apid	2mix	3mix
A verage width of stream: (in meters)			>10	ľ	>5-10		<1	1-2	>2-5
A verage depth of stream: (in meters)		>2	>1-2	r	1	>	·½-1	1/2	<1/2
Approximate velocity of stream: ('slow' = <1/2m/s; 'fast' = >1m/s) (use twig to test)		still	slow	ľ	fast	m	ned		mix
Water colour: ('disc' = discoloured with visible colour but still transparent)		silty	opaque	Ī		d	lisc		clear
Recent disturbance due to: ('const.' = construction; 'fl/dr' = flood or drought)***		flood	fire	(constr	01	ther		none
Bank/riparian vegetation is: ('grass' = includes reeds; 'shrubs' = include trees)		none		Ē	grass	sh	rubs	mix	
Surrounding impacts: ('erosn' = erosion/shear bank; 'farm' = farmland/settlement)***		erosn	farm	Г	trees	01	ther		open
Left bank cover: (rocks and vegetation) (in %)		0-50	51-80	T	81-95	>	-95		
Right bank cover: (rocks and vegetation) (in %)		0-50	51-80	Ē	81-95	>	-95		
(*** NOTE: if more than one option, choose the lowest)									
		TRFA	MCOND	ιт		тот	Γ Δ Ι (мах	32
									~~
	1	OTAL	IHAS SC	0	RE (%):		68	

INVERTEBRATE HABITAT ASSESSMENT	S	YSTEN	(IHAS)						
River Name:									
Site Name: GD4	D	ate : 2	7-11-2017	_					
SAMPLING HABITAT	1t	0	1	÷	2	3	╈	4	5
STONES IN CURRENT (SIC)	1	•		t	-	J	++	-	J
Total length of white water rapids (i.e.: bubbling water) (in meters)		none	0-1	T	>1-2	>2-3	П	>3-5	>5
Total length of submerged stones in current (run) (in meters)		none	0-2	I	>2-5	>5-10	Ш	>10	
Number of separate SIC area's kicked (not individual stones)		0	1	Ţ	2-3	4-5	1[6+	
A verage stone size's kicked (cm's) (gravel is <2, bedrock is >20)		none	<2>20	Γ	2-10	11-20	11	2-20	
Amount of stone surface clear (of algae, sediment, etc) (in %)*		n/a	0-25	T	26-50	51-75	IL	>75	
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min) (* NOTE: up to 25% of stone is usually embedded in the stream bottom)		0	<1	T	>1-2	2	11	>2-3	>3
				-					
	s	IC Sco	ore (max	21	0):	16			
VEGETATION		0	1	L	2	3	П	4	5
Length of fringing vegetation sampled (river banks) (PROTOCOL - in meters)		none	0-1/2	t	>1⁄~1	>1-2	tÞ	2	>2
Amount of aquatic vegetation sampled (underwater) (in square meters)		none	0-1/2	÷	>1/21	>1	iF		
Fringing vegetation sampled in: ('still' = pool/still water only: 'run' = run only)		none	0 /2	Ŧ	run	pool	iF		mix
Type of vegetation (% leafy year As opposed to stems/shoots) (an Veg Only = 49%)		none	0	F	1-25	26-50		51-75	>75
		nono		_	120	20.00	10	0170	210
	V	egetat	ion Scor	e	(max 1	5):	10)	
OTHER HABITAT/GENERAL		0	1	Ļ	2	3	41	4	5
Stones out of current (SOOC) sampled: (PROTOCOL - in square meters)		none	0-1/2	t	>1/2-1	1	ŤĒ	>1	
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)		none	under	-	0-1⁄2	>½1	iP	1	>1
Mud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)		none	under	-	0-1⁄2	1/2	ŤĒ	>1/2	
Gravel sampled: (PROTOCOL - in minutes) (if all gravel, SIC stone size = <2)**		none	0-1/2	T	1/2	>1/2**	İĒ		
Bedrock sampled: ('all' = no SIC, sand, or gravel then SIC stone size = >20)**	Ī	none	some	Ť			iĒ	all**	
Algae present: ('12m ² = algal bed; 'rocks' = on rocks; 'isol' = isolated clumps)***	Ī	>2m²	rocks	Ē	1-2m ²	<1m²	ŤĒ	isol	none
Travidentification: (PROTOCOL - using time: 'coor' = correct time)	Ĩ		under	Ť		corr	iF		over
(** NOTE: you must still fill in the SIC section)				ľ					
		thar U	abitat Cr			~ 20\.	44		
		пегп	abilat St	;0	ore (ma	x 20).			
	н	ABIT	Τ ΤΟΤΑ	Ļ	(MAX	55):	37	7	
STREAM CONDITION	n t	0	1	÷	2	2	╈	4	5
PHYSICAL	-	-		t	2	5	╧┝	-	5
River make up: ('pool' = pool/still/dam only; 'run' only; etc)		pool		Γ	run	rapid		2mix	3mix
A verage width of stream: (in meters)			>10	Γ	>5-10	<1	Π	1-2	>2-5
A verage depth of stream: (in meters)		>2	>1-2	ľ	1	>½1	П	1/2	<1/2
Approximate velocity of stream: ('slow' = <1/2m/s; 'fast' = >1m/s) (use twig to test)		still	slow	Ţ	fast	med			mix
Water colour: ('disc' = discoloured with visible colour but still transparent)		silty	opaque	Ţ		disc	П		clear
Recent disturbance due to: ('const.' = construction; 'fl/dr' = flood or drought)***		flood	fire	Ţ	constr	other	1		none
Bank/riparian vegetation is: ('grass' = includes reeds; 'shrubs' = include trees)		none		T	grass	shrubs	11	mix	
Surrounding impacts: ('erosn' = erosion/shear bank; 'farm' = farmland/settlement)***		erosn	farm	Ţ	trees	other	11		open
Left bank cover: (rocks and vegetation) (in %)		0-50	51-80	Ĺ	81-95	>95	11		
Right bank cover: (rocks and vegetation) (in %)	Ì	0-50	51-80	ľ	81-95	>95	1		
(*** NOTE: if more than one option, choose the lowest)				1					
	s	TRFA	м сомр	т		тот∡⊦	(M		36
				<u></u>					~ ~
	т	OTAL	IHAS SC	:0)RE (%):	7:	3	

INVERTEBRATE HABITAT ASSESSMENT	SYSTEM	(IHAS)				
River Name:						
Site Name: GD5	Date: 06	6-12-2017				
SAM PLING HABITAT	0	1	2	3	4	5
STONES IN CURRENT (SIC)						
Total length of white water rapids (i.e.: bubbling water) (in meters)	none	0-1	>1-2	>2-3	>3-5	>5
Total length of submerged stones in current (run) (in meters)	none	0-2	>2-5	>5-10	>10	
Number of separate SIC area's kicked (not individual stones)	0	1	2-3	4-5	6+	
A verage stone size's kicked (cm's) (gravel is <2, bedrock is >20)	none	<2>20	2-10	11-20	2-20	
A mount of stone surface clear (of algae, sediment, etc) (in %)*	n/a	0-25	26-50	51-75	>75	
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min) (* NOTE: up to 25% of stone is usually embedded in the stream bottom)	0	<1	>1-2	2	>2-3	>3
	010 000	- (~ ^ \ -			
VEGETATION		re (max	20): 2	16	4	5
Length of fringing vegetation sampled (river banks) (PROTOCOL - in meters)	none	0-1/2	>1/2-1	>1-2	2	>2
Amount of aquatic vegetation sampled (underwater) (in square meters)	none	0-1⁄2	>1/2-1	>1		
Fringing vegetation sampled in: ('still' = pool/still water only; 'run' = run only)	none		run	pool		mix
Type of vegetation (% leafy veg. As opposed to stems/shoots) (aq. Veg. Only = 49%)	none	0	1-25	26-50	51-75	>75
	Vegetat	ion Scor	o (max f	15).	10	
OTHER HABITAT/GENERAL	0	1	2	3	4	5
Stones out of current (SOOC) sampled: (PROTOCOL - in square meters)	none	0-1/2	>1/2-1	<u>1</u>	>1	
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	none	under	0-1/2	>1/2-1	1	>1
M ud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	none	under	0-1/2	1/2	>1/2	
Gravel sampled: (PROTOCOL - in minutes) (if all gravel, SIC stone size = <2)**	none	0-1⁄2	1/2	>1/2**		
Bedrock sampled: ('all' = no SIC, sand, or gravel then SIC stone size = >20)**	none	some			all**	
Algae present: ('1-2m ² = algal bed; 'rocks' = on rocks; 'isol' = isolated clumps)***	>2m²	rocks	1-2m ²	<1m²	isol	none
Tray identification: (PROTOCOL - using time: 'coor' = correct time)		under		corr		over
(* NOTE: you must still fill in the SIC section)						
	Other H	abitat So	core (ma	x 20):	10	
	HABITA	Τ ΤΟΤΑ	L(MAX	55):	36	
STREAM CONDITION	0	1	2	3	4	5
PHYSICAL						
River make up: ('pool' = pool/still/dam only; 'run' only; etc)	pool		run	rapid	2mix	3mix
A verage width of stream: (in meters)		>10	>5-10	<1	1-2	>2-5
A verage depth of stream: (in meters)	>2	>1-2	1	>1/2-1	1/2	<1/2
Approximate velocity of stream: ('slow' = <½m/s; 'fast' =>1m/s) (use twig to test)	still	slow	fast	med		mix
Water colour: ('disc' = discoloured with visible colour but still transparent)	silty	opaque		disc		clear
Recent disturbance due to: ('const.' = construction; 'fl/dr' = flood or drought)***	flood	fire	constr	other		none
Bank/riparian vegetation is: ('grass' = includes reeds; 'shrubs' = include trees)	none		grass	shrubs	mix	
Surrounding impacts: ('erosn' = erosion/shear bank; 'farm' = farmland/settlement)***	erosn	farm	trees	other		open
Left bank cover: (rocks and vegetation) (in %)	0-50	51-80	81-95	>95		
Right bank cover: (rocks and vegetation) (in %)	0-50	51-80	81-95	>95		
(*** NOTE: If more than one option, choose the lowest)						
	STREA	<u>M COND</u>	ITIONS	TOTAL	MAX	35
	TOTAL	IHAS SC	ORE (%):	71	

INVERTEBRATE HABITAT ASSESSMENT	i si	STEN	(IHAS))					
River Name:									
Site Name: T1	D	ate : 05	5-12-2017						1
	n h	•	1		2	3	_	4	5
STONES IN CURRENT (SIC)			•	11		<u> </u>	-		-
Total length of white water rapids (i.e.: bubbling water) (in meters)		none	0-1	Π	>1-2	>2	-3	>3-5	>5
Total length of submerged stones in current (run) (in meters)		none	0-2	Π	>2-5	>5-	-10	>10	
Number of separate SIC area's kicked (not individual stones)		0	1	П	2-3	4-	·5	6+	
A verage stone size's kicked (cm's) (gravel is <2, bedrock is >20)		none	<2>20	Π	2-10	11-2	20	2-20	
Amount of stone surface clear (of algae, sediment, etc) (in %)*	T	n/a	0-25	П	26-50	51-	75	>75	
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min) (* NOTE: up to 25% of stone is usually embedded in the stream bottom)		0	<1		>1-2	2	2	>2-3	>3
	s	IC Scc	o <u>re (max</u>	2	<u>:0):</u>	14			
VEGETATION	+	0	1	11	2	3	<u> </u>	4	5
I enoth of fringing vegetation sampled (river banks) (PROTOCOL - in meters)	+	none	0-1/2		>1/21	>1	-2	2	>2
Amount of aquatic vegetation sampled (underwater) (in square meters)	Ŧ	none	0-1/2	Ħ	>1/21	>	.1		
Fringing vegetation sampled in: ('still' = pool/still water only: 'run' = run only)	+	none		iÌ	run	po			mix
Type of venetation (% leafy year As opposed to stems/shoots) (ag. Veq. Only = 49%)	+	none	0	Ħ	1-25	26-	-50	51-75	>75
	+-	101.0	Ť	1.				01.0	2.0
	V	egetat	ion Sco	re	<u>(max 1</u>	15):		9	
OTHER HABITAT/GENERAL		0	1	1	2	3	<u>; </u>	4	5
Stones out of current (SOOC) sampled: (PROTOCOL - in square meters)		none	0-1/2	Π	>½1		1	>1	
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)		none	under	ij	0-1⁄2	>1/	⁄ 2 1	1	>1
M ud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	Ŧ	none	under	Ħ	0-1/2	1/	2	>1/2	
Gravel sampled: (PROTOCOL - in minutes) (if all gravel, SIC stone size = <2)**	T	none	0-1/2	Ħ	1/2	>1/	/** 2		
Bedrock sampled: ('all' = no SIC, sand, or gravel then SIC stone size = >20)**	Ŧ	none	some	Ħ				all**	
Algae present: ('1-2m ² = algal bed: 'rocks' = on rocks; 'isol' = isolated clumps)***	Ŧ	>2m²	rocks	Ħ	1-2m ²	<1r	n²	isol	none
Travidentification: (PROTOCOL - using time: 'coor' = correct time)			under	Ħ		со	orr		over
(** NOTE: you must still fill in the SIC section)				Ľ					
		- 1 n			(0.0			
	0	ther H	abitat S	CC	ore (ma	1X 20)):	14	
	н			<u>\L</u>	<u>. (M A X</u>	55):	;	37	
	-	_					_		
PHYSICAL		U	1	11	2	<u> </u>	<u>'</u>	4	5
River make up: ('pool' = pool/still/dam only; 'run' only; etc)		pool		ÌÌ	run	rap	bid	2mix	3mix
Average width of stream: (in meters)			>10	ÌÌ	>5-10	<	1	1-2	>2-5
Average depth of stream: (in meters)		>2	>1-2	Ì	1	>1/	<u>⁄</u> 21	1/2	<1/2
Approximate velocity of stream: ('slow' = <1/2m/s; 'fast' = >1m/s) (use twig to test)	T	still	slow	Ì	fast	me	ed		mix
Water colour: ('disc' = discoloured with visible colour but still transparent)	TÈ	silty	opaque	Ī		dis	SC		clear
Recent disturbance due to: ('const.' = construction; 'fl/dr' = flood or drought)***	T	flood	fire	ÎÌ	constr	oth	ner		none
Bank/riparian vegetation is: ('grass' = includes reeds; 'shrubs' = include trees)	Ŧ	none		ÎÌ	grass	shru	ubs	mix	
Surrounding impacts: ('erosn' = erosion/shear bank; 'farm' = farmland/settlement)***	-	erosn	farm	Ħ	trees	oth	ner		open
Left bank cover: (rocks and vegetation) (in %)	Ŧ	0-50	51-80	ÎÌ	81-95	>9	95		
Right bank cover: (rocks and vegetation) (in %)	Ŧ	0-50	51-80	Ħ	81-95	>9) 5		
(*** NOTE: if more than one option, choose the lowest)									
		TDEA		יור	TIONS	тот	• •• <i>i</i>		^ 0
	- 3	IKEA		<u>, 1</u>	TIUNS	1017		MAA	28
	Т	OTAL	IHAS SO	20	ORE (%	.):		65	

INVERTEBRATE HABITAT ASSESSMENT	SYSTEM	(IHAS)				
River Name :						
Site Name: KD	Date: 0	5-12-2017			_	
SAMPLING HABITAT	0	1	2	3	4	5
STONES IN CURRENT (SIC)	•		-		-	J
Total length of white water rapids (i.e.: bubbling water) (in meters)	none	0-1	>1-2	>2-3	>3-5	>5
Total length of submerged stones in current (run) (in meters)	none	0-2	>2-5	>5-10	>10	
Number of separate SIC area's kicked (not individual stones)	0	1	2-3	4-5	6+	
Average stone size's kicked (cm's) (gravel is <2, bedrock is >20)	none	<2>20	2-10	11-20	2-20	
A mount of stone surface clear (of algae, sediment, etc) (in %)*	n/a	0-25	26-50	51-75	>75	
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min)	0	<1	>1-2	2	>2-3	>3
(*NOTE: up to 25% of stone is usually embedded in the stream bottom)						
	SIC Sco	re (max	20):	0	1 . 1	
VEGETATION	0	1	2	3	4	5
Length of fringing vegetation sampled (river banks) (PROTOCOL - in meters)	none	0-1/2	>½1	>1-2	2	>2
Amount of aquatic vegetation sampled (underwater) (in square meters)	none	0-1/2	>½1	>1		
Fringing vegetation sampled in: ('still' = pool/still water only; 'run' = run only)	none		run	pool		mix
Type of vegetation (% leafy veg. As opposed to stems/shoots) (aq. Veg. Only = 49%)	none	0	1-25	26-50	51-75	>75
					40	
OTHER HABITAT/GENERAL	Vegetat 0	1 1	e (max -	3	10	5
Stones out of current (SOOC) sampled: (PROTOCOL - in square meters)	none	0-1/2	>1/z-1	1	>1	
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	none	under	0-1⁄2	>1/2-1	1	>1
M ud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	none	under	0-1⁄2	1/2	>1⁄2	
Gravel sampled: (PROTOCOL - in minutes) (if all gravel, SIC stone size = <2)**	none	0-1/2	1/2	>1/2**		
Bedrock sampled: ('all' = no SIC, sand, or gravel then SIC stone size = >20)**	none	some			all**	
Algae present: ('1-2m ² = algal bed; 'rocks' = on rocks; 'isol' = isolated clumps)***	>2m ²	rocks	1-2m ²	<1m²	isol	none
Tray identification: (PROTOCOL - using time: 'coor' = correct time)		under		corr		over
(** NOTE: you must still fill in the SIC section)						
	Other H	abitat So	core (ma	1x 20):	13	
			-			
	HABITA	T TOTA	L(MAX	55):	23	1
STREAM CONDITION	0	1	2	3	4	5
PHYSICAL						
River make up: ('pool' = pool/still/dam only; 'run' only; etc)	pool		run	rapid	2mix	3mix
A verage width of stream: (in meters)		>10	>5-10	<1	1-2	>2-5
A verage depth of stream: (in meters)	>2	>1-2	1	>1⁄z1	1/2	<1/2
Approximate velocity of stream: ('slow' = <1/am/s; 'fast' = >1m/s) (use twig to test)	still	slow	fast	med		mix
Water colour: ('disc' = discoloured with visible colour but still transparent)	silty	opaque		disc		clear
Recent disturbance due to: ('const.' = construction; 'fl/dr' = flood or drought)***	flood	fire	constr	other		none
Bank/riparian vegetation is: ('grass' = includes reeds; 'shrubs' = include trees)	none		grass	shrubs	mix	
Surrounding impacts: ('erosn' = erosion/shear bank; 'farm' = farmland/settlement)***	erosn	farm	trees	other		open
Left bank cover: (rocks and vegetation) (in %)	0-50	51-80	81-95	>95		
Right bank cover: (rocks and vegetation) (in %)	0-50	51-80	81-95	>95		
(*** NOTE: if more than one option, choose the lowest)						
	STREA	M COND	ITIONS	TOTAL	MAX	28
					· · · ·	-
	TOTAL	IHAS SC	ORE (%):	51	

INVERTEBRATE HABITAT ASSESSMENT	S	YSTEN	(IHAS)						
River Name:									
Site Name: KD2	C) ate : 0	5-12-2017	_					
SAMPLING HABITAT		0	1	+	2	3	4		
STONES IN CURRENT (SIC)	_	•	-	+	2				,
Total length of white water rapids (i.e.: bubbling water) (in meters)		none	0-1	T	>1-2	>2-3	>3-5	>	>5
Total length of submerged stones in current (run) (in meters)		none	0-2	T	>2-5	>5-10	>10		
Number of separate SIC area's kicked (not individual stones)		0	1	Ţ	2-3	4-5	6+		
A verage stone size's kicked (cm's) (gravel is <2, bedrock is >20)		none	<2>20	T	2-10	11-20	2-20		
Amount of stone surface clear (of algae, sediment, etc) (in %)*		n/a	0-25	T	26-50	51-75	>75		
PROTOCOL: time spent actually kicking stones (in minutes) (gravel/bedrock = 0 min) (*NOTE: up to 25% of stone is usually embedded in the stream bottom)		0	<1		>1-2	2	>2-3	>	•3
	s	IC Sco	ore (max	20	0):	16			
VEGETATION		0	1	Ţ	2	3	4	Ę	5
Length of fringing vegetation sampled (river banks) (PROTOCOL, in meters)	-	none	0-14	÷	>1/-1	>12	2	, .	2
A mount of aquatic vegetation sampled (underwater) (in square meters)		none	0-72	-	>1/_1	>FZ	2		~2
Finding vogetation compled in (atill, pool(atill water only (run, run only)		none	0-72	+	2/21			~	, iv
Finging vegetation sampled in: (still = pool/still water only, run = run only)		none		-	1.25	26.50	5175		11X 75
Type of vegetation (%leary veg. As opposed to stems/shoots) (aq. veg. Only = 49%)	+	none	0	_	FZO	20-50	5175	>	/5
	V	egetat	ion Scor	е	(max 1	5):	11		
OTHER HABITAT/GENERAL	_	0	1	L	2	3	4	5	5
Stopes out of current (SOOC) sampled: (PROTOCOL - in square meters)	-	none	0-1/2	÷	>1⁄~1	1	>1		_
Sand sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	-	none	under	F	0-1/2	>1/2-1	1		>1
Mud sampled: (PROTOCOL - in minutes) ('under' = present, but only under stones)	+	none	under	-	0-1/2	1/2	>1/2		-
Gravel sampled: (PROTOCOL - in minutes) (and a process, set only and control) Gravel sampled: (PROTOCOL - in minutes) (if all gravel SIC stone size = <2)**	+	none	0-1%	t	1/2	>1/2**	- 72	-	_
Bedrock sampled: (1101 – no SIC sand or gravel then SIC stone size – >20)**	+	none	some	Ť	/2	-12	all**	-	_
Δ lose present: ('12m ² - algal bed: 'rocks' - op rocks: 'isol' - isolated clumps)***	+	>2m2	rocks	F	1.2m2	<1m2	isol	no	ne
Travidentification: (PDOTOCOL using time: 'acart' accreat time)		>2111-	IUCKS	h	F2111-		1501	110	(or
(** NOTE: you must still fill in the SIC section)			under	h		COII		01	/ei
	Τ			-					
	C)ther H	abitat So	:0	ore (ma	x 20):	14		
	Ŀ		ΑΤ ΤΟΤΑ	ī	(M & X	55).	41		
	Ĺ			Ī	1				
STREAM CONDITION		0	1		2	3	4	5	5
River make up: ('pool' = pool/still/dam only: 'run' only: etc)	-	pool		t	run	rapid	2mix	3n	nix
A verage width of stream: (in meters)	+		>10	Ŧ	>5-10	<1	1-2	>2	2-5
A verage depth of stream: (in meters)	Ŧ	>2	>1-2	Þ	1	>1/~1	1/2	<	.1/2
Approximate velocity of stream: ('slow' = $<\frac{1}{m}/s$: 'fast' = >1m/s) (use twig to test)	Ŧ	still	slow	F	fast	med		m	nix
Water colour: ('disc' = discoloured with visible colour but still transparent)	Ŧ	silty	opaque	ĥ		disc		cle	ear
Recent disturbance due to: ('const ' = construction: 'fl/dr' = flood or drought)***	Ŧ	flood	fire	Ē	constr	other		no	ine
Bank/rinarian vegetation is: ('grass' = includes reeds: 'shruhs' = include trees)	Ŧ	none		Ŧ	arass	shrubs	mix		
Surrounding impacts: ('erosn' = erosion/shear bank' 'farm' = farmland/settlement)***		erosn	farm	ŧ	trees	other		or	pen
Left bank cover: (rocks and vegetation) (in %)		0-50	51-80	ŧ	81.95	>95			
Right bank cover: (rocks and vegetation) (in %)		0-50	51-80	ŧ	81.05	>05		F	
(*** NOTE: if more than one option, choose the lowest)		0.00	01:00	┢	5135	~33			
	T			-	1				
	S	TREA	M COND	IT	TIONS	TOTAL	(MAX	32	
	T	OTAL	IHAS SC	Ö) R E (%)):	73		

DATE: Op Cash TAXON S VG CSM TAXON S VG CSM TOT TAXON D DIFTERA: I				RIVE	R HEA	LTH P	ROGR	AMME - SASS 5 SCORE SH	IEET	Г									
GRUD REFERENCE: PORIFERA 5 M HEM IP TERA: M M DIP TERA: M	DATE: 06-12-2017	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот
S*. COELENTERATA 1 Image: Sector and administration of the sector and administration of the sector administration	GRID REFERENCE:	PORIFERA	5					HEMIPTERA:						DIPTERA:					
E.* TUR BELLARIA 3 A A Bigharboarding 5 I<	S:°	COELENTERATA	1					Belostomatidae*	3		Α		Α	Athericidae	10	1			1
STE CODE: GD2 ANNELIDA: Image: Control of the state of the st	E: °	TURBELLARIA	3					Corixidae*	3		Α		Α	B lepharo ceridae	15				
RIVER: Oligochaeta 1 I Chironomiae 2 A A Pydonetiae STE DESCRIPTON: CRUSTACEA: - - Naucoridae' 7 1 1 Chironomiae 2 A A A A STE DESCRIPTON: CRUSTACEA: - - Neptae' 3 - 1 1 Diadae'' 0 - - A B A A A A A A A A A A A	SITE CODE: GD2	ANNELIDA:						Gerridae*	5		Α		Α	Ceratopogonidae	5	1			1
SITE DESCRIPTON: Leaches 3 Auscoridae' 7 1 1 Culicidae' 1 I </td <td>RIVER:</td> <td>Oligochaeta</td> <td>1</td> <td></td> <td></td> <td>Α</td> <td>Α</td> <td>Hydrometridae*</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>Chironomidae</td> <td>2</td> <td>Α</td> <td></td> <td>Α</td> <td>В</td>	RIVER:	Oligochaeta	1			Α	Α	Hydrometridae*	6					Chironomidae	2	Α		Α	В
WEATHER CONDITION: CRUSTACEA: Notication Notication <th< td=""><td>SITE DESCRIPTION:</td><td>Leeches</td><td>3</td><td></td><td></td><td></td><td></td><td>Naucoridae*</td><td>7</td><td></td><td></td><td>1</td><td>1</td><td>Culicidae*</td><td>1</td><td></td><td></td><td></td><td></td></th<>	SITE DESCRIPTION:	Leeches	3					Naucoridae*	7			1	1	Culicidae*	1				
TEMP:22.1°C Amphipoda 10 I Notoenciae* 3 I Empiddae 6 I I Ph:7.54 Potanonautidae* 3 I 1 1 I<	WEATHER CONDITION:	CRUSTACEA:						Nepidae*	3					Dixidae*	10				
Ph: 7.54 Potamonatidae* 3 Image: 1 1 Pleide* 4 Image: 1 Epyderidae 3 Image: 1	TEMP: 22.1 °C	Amphipoda	13					Notonectidae*	3					Empididae	6				
DO: 0.578 mg/l Andaa 8 M Mediader 5 A A Muscidae 1 Image: Solution of the sol	Ph: 7.54	Potamonautidae*	3			1	1	Pleidae*	4					Ephydridae	3				
Cand: 8:0 mS/m Palaemonidae 0 M MetALOPTERA: M Psychodiae 1 M M BIOTOPES AMPLED: HYDRACARINA 8 A Conduidae 8 C Synhidae* 1 K K SIC: TME: minutes PLECOPTERA: A Conduidae 8 C Synhidae* 1 K K SIC: Misina Patione 1 K N N A Conduidae Synhidae* 1 K K A SIC: Miscone Patidae C THICHOPTERA C Tipulatae S A A A AQUATIC VEG: DOM SP: Badidae 2sp 6 A Hydropsychidae 1sp 4 A A B Hydropsychidae 2sp C A B B Hydropsychidae 2sp C Hydropsychidae S L Lymaeddae* 3 L L SAND: Caendidae 6 A	DO: 06.78 mg/l	Atyidae	8					Veliidae/Mveliidae*	5		Α		Α	Muscidae	1				
BIOTOPES SAMPLED: HYDRACARINA 8 A A Contailiage 8 Simuliage 5 I </td <td>Cond: 26.0 mS/m</td> <td>Palaemonidae</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>MEGALOPTERA:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Psvchodidae</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	Cond: 26.0 mS/m	Palaemonidae	10					MEGALOPTERA:						Psvchodidae	1				
SIC: TME: minutes PLECOPTERA: Image: Structure instructure instru	BIOTOPES SAMPLED:	HYDRACARINA	8	A			A	Cordalidae	8					Simuliidae	5				
SOC: Notonemoundae 14 Notonemoundae 14 Notonemoundae 14 Notonemoundae 16 Notonemoundae 5 A A BEDROCK: Perildae Perildae 12 Dipseudopsidae 10 Tipulitae 5 A A AQUATIC VEG: DOM SP: Baetidae 1sp 4 Hydropsychidae 1sp 4 Ancylidae 6 A Ancylidae 6 A Ancylidae 6 A A A Bulininae* 3 C C C GRAVEL: Baetidae 2s p 12 A B B Hydropsychidae 2s p 12 A Hydropsychidae 2s p 12 C Hydropsychidae 3 C C C MUD: Caenidae 15 A Piopontarde 12 A Pinotidae* 3 C C C C Contropodiae 12 C Hydropsychidae 2s p 12 A Pinotidae* 3 C C C C <t< td=""><td>SIC: TIME: minutes</td><td>PLECOPTERA:</td><td></td><td></td><td></td><td></td><td></td><td>Sialidae</td><td>6</td><td></td><td></td><td></td><td></td><td>Svrphidae*</td><td>1</td><td></td><td></td><td></td><td></td></t<>	SIC: TIME: minutes	PLECOPTERA:						Sialidae	6					Svrphidae*	1				
BEDROCK Perliae 12 N Dipseudopsidae 10 N Tupuidae 5 N N AQUATIC VEG: DOM SP: Baetidae 1sp. 4 N Hydropsychidae 1sp. 4 Ancyddae 6 Image: Constraint 1 Image: Constraint 1 Image: Constraint 2 Image: Constraista<	SOOC:	Notonemouridae	14					TRICHOPTERA						Tabanidae	5	Α			Α
AQUATIC VEG: DM SP: EPHEMEROPTERA Image: Constraint of the second	BEDROCK:	Perlidae	12					Dipseudopsidae	10					Tipulidae	5				
M VEG IC: DOM SP: Baetidae 2 sp 6 Image: Constraint of the system	AQUATIC VEG: DOM SP:	EPHEMEROPTERA						Ecnomidae	8					GASTROPODA					
M VEGOC: DOM SP: Baetidae 2 sp 6 A A Bulininae* 3 I I I GRAVEL: Baetidae >2 sp 1 A B Hydropsychidae >2 sp 1 Hydropsychidae >2 sp 2 I Hydropsychidae* 3 I I I GRAVEL: Caenidae 6 A A Phydropsychidae >2 sp 1 I Hydropsychidae* 3 I	M VEGIC: DOM SP:	Baetidae 1sp	4					Hvdropsvchidae 1sp	4					Ancvlidae	6				
GRAVEL: Baetidae >2 sp 12 A B B Hydropsychidae >2 sp 12 Image: Constraint of the system of the	M VEG OOC: DOM SP:	Baetidae 2 sp	6					Hydropsychidae 2 sp	6	Α			Α	Bulininae*	3				
SAND: Caenidae 6 A A Philopotamidae 10 Lymnaeidae* 3 L A MUD: Ephemeridae 6 A Polycentropodidae 12 Physidae* 3 L A HADD PICKING/VISUAL OBS: Heptagenidae 18 CASED CADDIS: Palanohidae/Since 3 L A FLOW: Leptophiebidae 9 B 1 B CASED CADDIS: Planohidae* 3 L A TURBITY: Oligoneuridae 15 C Calamocaritidae SWC 11 C Corbiculidae*ST 5 L L L Play and table SWC 12 Hydroptilidae 66 C Sphaeridae 3 L </td <td>GRAVEL:</td> <td>Baetidae >2 sp</td> <td>12</td> <td>A</td> <td>в</td> <td></td> <td>в</td> <td>Hvdropsvchidae >2 sp</td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td>Hvdrobiidae*</td> <td>3</td> <td></td> <td></td> <td></td> <td></td>	GRAVEL:	Baetidae >2 sp	12	A	в		в	Hvdropsvchidae >2 sp	12					Hvdrobiidae*	3				
MUD: Ephemeridae 15 Image: Constraint of the system	SAND:	Caenidae	6	A			A	Philopotamidae	10					Lvmnaeidae*	3				
HAND PICKING/VISUAL OBS: Heptageniidae 13 Image: Constraint of the second constraints of the second consecond constraints of the second constraints o	M UD:	Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
FLOW: Leptophlebildae 9 B 1 B CASED CADDIS: I I Thiaridae* 3 I I TURBIDITY: Oligoneuridae 15 I Barbarochthonidae SWC 13 Vipipardae*ST 5 I I I Image: Stress of the str	HAND PICKING/VISUAL OBS:	Heptageniidae	13					Psychomyiidae/Xiphocen.	8					Plano rbidae*	3				
TURBIDITY: Oligoneuridae 15 Image: Strate interval and nterval and interval andinterval and interv	FLOW:	Leptophlebiidae	9	в		1	в	CASED CADDIS:						Thiaridae*	3				
RIPARIAN LAND USE: Polymitarcyidae 10 Calamoceratidae ST 11 Pail PELECYPODA Image: Construint of the state of	TURBIDITY:	Oligoneuridae	15					Barbarochthonidae SWC	13					Viviparidae* ST	5				
Prosopisomatidae 15 Glossosomatidae SWC 11 Corbiculidae 5 I <	RIPARIAN LAND USE:	Polymitarcvidae	10					Calamo ceratidae ST	11					PELECYPODA					
Teloganodidae SWC 12 1 Hydroptilidae 6 1 Sphaeriidae 3 1 1 1 Tricorythidae 9 1 Hydrosalpingidae SWC 15 1 Unionidae 6 1 1 ODONATA: 1 Lepidostormatidae 10 1 B No OF TAXA: 12 9 8 23 DISTURBANCE IN RIVER: Caloptergidae ST, 10 1 1 Leptoceridae 6 1 B No OF TAXA: 12 9 8 23 Chlorocyphidae 10 A 1 A Petrothrincidae SWC 11 ASPT: 7.00 6.11 5.88 6.77 Chlorocyphidae 8 A A Petrothrincidae SWC 11 ASPT: 7.00 6.11 5.88 6.77 Chlorolestidae 8 A A Pisulidae 10 IHAS: 7.00 6.11 5.88 6.77 Lestidae 8 A A Pisulidae 10 IHAS: 7.00 6.11 5.88 6.77		Prosopistomatidae	15					Glossosomatidae SWC	11					Corbiculidae	5				
Tricorythidae 9 0 Hydrosalpingidae SWC 6 0 Unionidae 6 0 <td></td> <td>Telogano didae SWC</td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td>Hvdroptilidae</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>Sphaeriidae</td> <td>3</td> <td></td> <td></td> <td></td> <td></td>		Telogano didae SWC	12					Hvdroptilidae	6					Sphaeriidae	3				
ODONATA: Image: Coloregration of the construction of the construct		Tricorythidae	9					Hvdrosalpingidae SWC	15					Unionidae	6				
DISTURBANCE IN RIVER: Catopterygidae ST,T 10 1 1 Leptoceridae 6 1 B B NO OF TAXA: 12 9 8 23 Chlorocyphidae 10 A 1 A Petrothrincidae SWC 11 A Petrothrincidae SWC 13 A ASPT: 7.00 6.11 5.88 6.77 Conservisionidae 4 A A Petrothrincidae SWC 13 A A ASPT: 7.00 6.11 5.88 6.77 Lestidae 8 ColeOPTERA: B ColeOPTERA: B ColeOPTERA: ColeOPTERA: ColeOPTERA: A A Algal Al		ODONATA:						Lepidostomatidae	10					SASS SCORE:		84	55	47	142
Original of the copyhidae 10 A 1 A Petrothrincidae SWC 11 D A SPT: 7.00 6.1 5.88 6.77 Chlorocyphidae 8 A A Petrothrincidae SWC 11 D A SPT: 7.00 6.1 5.88 6.77 Chlorolestidae 8 A A Pisulidae 10 C IHAS: 7.00 6.1 5.88 6.77 Coenagrionidae 4 Coenagrionidae 4 A Pisulidae 10 C IHAS: 7.00 6.1 5.88 6.77 SIGNS OF POLLUTION: Platycnemidae 10 CoeleopTERA: ColeopTERA: CoeleopTERA: CoeleopTera	DISTURBANCE IN RIVER	Caloptervgidae ST T	10			1	1	Leptoceridae	6	1	в		в	NO OF TAXA		12	9	8	23
Chlorolestidae 8 A A Pisulidae 1 Image: Seriest on a seriest of a seriest on a seriest of a seriest on a seriest of a seriest on a		Chlorocyphidae	10	Δ		1	Ā	Petrothrincidae SWC	11		_		_	ASPT:	1 1	7 00	6 11	5.88	6.17
Onionicitation 0 A A Instruction 0 Instruction		Chlorolestidae	8	<u> </u>	•	<u> </u>		Pisuliidae	10					IHAS		1.00	0	0.00	0
Lestidae 8 COLEOPTERA: Image: Cole of the cole of		Coenagriopidae	4		<u> </u> ^		<u> </u>	Sericostomatidae SWC	13										
SIGNS OF POLLUTION: Platycnemidae 10 Dytiscidae* 5 1 I COMMENTS: Protoneuridae 8 0 Elmidae/Dryopidae* 8 1 1 Algal Zygoptera juvs. 6 0 Gyrinidae* 5 1 A Algal Aeshnidae 8 0 Halipidae* 5 1 A Algal Corduliidae 8 0 Helodidae 12 4 4 Fairbreathers OTHER OBSERVATIONS: Gomphidae 6 4 Hydrophilidae* 5 4 SWC = South Western Cape T = Tropical Libellulidae 4 4 Hydrophilidae* 5 4 SWC = South Western Cape T = Tropical Libellulidae 4 4 Hydrophilidae* 5 4 SWC = South Western Cape T = Sub-tropical Libellulidae 4 4 Hydrophilidae* 5 4 5 5 5 5 5 Libellulidae 4 4 4 4 4 4 4 4 4		Lestidae	8					COLEOPTERA	N					OTHER DIOTA:					
Protoneuridae 8 I I I I Algal Zygoptera juvs. 6 Gyrinidae* 5 1 A Algal Aeshnidae 8 Halipidae* 5 1 A Algal Corduliidae 8 Halipidae* 5 1 A Algal OTHER OBSERVATIONS: Gomphidae 6 Hydraenidae* 5 5 SWC = South Western Cape T = Tropical Libellulidae 4 Hydrophilidae* 5 SWC = South Western Cape T = Tropical LibelPIDOPTERA: Limnichidae 10 GSM = gravel, sand & mud S = Stone & rock		Platycnemidae	10					Dytiscidae*	5	1			1						
Interview Image: Displayer Image:	SIGNS OF TOLEOTION.	Protoneuridae	8					Elmidae/Dryopidae*	8	-	1		1						
Zygopterajovs. O			6					Cyrinidae*	5		1	•	^	Algai					
OTHER OBSERVATIONS: O O Image/Product O O Image/Product O O Image/Product O Image/Product O Image/Product O Image/Product Image/Product <thimage product<="" th=""> <th< td=""><td></td><td></td><td>8</td><td></td><td>-</td><td></td><td></td><td>Halinidae*</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thimage>			8		-			Halinidae*	5										
OTHER OBSERVATIONS: Conductation		Corduliidae	8					Helodidae	12					* – airbreathers					
Libellulidae 4 Hydrophilidae* 5 VG = all vegetation ST = Sub-tropical Libellulidae 4 Libellulidae* 10 GSM = gravel, sand & mud S = Stone & rock	OTHER OBSERVATIONS	Gomphidae	6				-	Hydraenidae*	8			+		SWC - South Wester	Can	_ т	- Tro	nical	
LEPIDOPTERA: Limnichidae 10 GSM = gravel, sand & mud S = Store & rock	OTHER OBJERVATIONS.	Libellulidae	1	<u> </u>			<u> </u>	Hydrophilidae*	5			1		VG - all vegetation	ιυαμ	о і ст	- Sub	tropica	
ILINIO TENA. I I I I I I I I I I I I I I I I I I I			++	-				Limnichidae	10			1			mud	01	- Stor		r ok
Puralidae 12 Psenhenidae 10 1 44 A=2 40 P=40 400 D=54000		Pyralidae	12				-	Psenhenidae	10		-	+	-	1_1 Δ_2_10 B_10 100	C_100	0. 1000	- 0.01	00	

DATE: 06-02-2017TAXONSVGGSMTOTTAXONSVGGSMTOTGRID REFERENCE:PORIFERA5HEMIPTERA:DIPTERA:DIPTERA:IIS*COELENTERATA1Belostomatidae*311At Accidacidae10IE:*TURBELLARIA3Corixidae*3AABBlepharoceridae15ISITE CODE:GD3ANNELIDA:Corixidae*5AACeratopogonidae5BBRIVER:Oligochaeta1IGerridae*6Chironomidae2BBBSITE DESCRIPTION:Leeches3Naucoridae*7Culicidae*10IIWEATHER CONDITION:CRUSTACEA:Nepidae*3Empididae6IITEMP.20.1 *CAmphipoda13Pleidae*3IIII69.8/87.3%Atyidae8Velidae/Mveliidae*5AAMuscidae1ICond:22.0 mS/mPalaemonidae10MEGALOPTERA:IPsychodidae1IISIC: TIME: minutesPLCOPTERA:ISialidae6Simulidae5IIISOCC:Notonemouridae14IIIIIIIISIC: TIME: minutesPLECOPTERA:ISialidae6Simulidae5IIII
GRID REFERENCE: PORFERA 5 HEMIPTERA: DIPTERA: DIPTERA: <t< th=""></t<>
S.* COELENTERATA 1 M Belostomatidae* 3 1 1 Athericidae 10 M I E:* TURBELLARIA 3 Corixidae* 3 A A Belpharoceridae 15 M SITE CODE:GD3 ANNELIDA: Image: Corixidae* S A A Belpharoceridae 15 Image: Corixidae* S A A Belpharoceridae 15 Image: Corixidae* S A A Belpharoceridae 5 A A A Belpharoceridae 5 Image: Corixidae* S Image: Corixidae* Corixidae* 5 A A Ceratopogonidae 5 Image: Corixidae* Corixidae* 1 Image: Corixidae* A Corixidae* 1 Image: Corixidae* 1 I
E:* TURBELLARIA 3 Corixidae* 3 A A B Blepharoceridae 15 Image: Corixidae* 1 Image: Co
SITE CODE:GD3 ANNELIDA: Image: Construction of the system of the sy
RIVER:Oligochaeta1Hydrometridae*6Chironomidae2BBBSITE DESCRIPTION:Leeches3Naucoridae*7Culicidae*1II
SITE DESCRIPTION: Leeches 3 Naucoridae* 7 Culicidae* 1 I<
WEATHER CONDITION: CRUSTACEA: Image: Mapping and Mapp
TEMP:20.1 °CAmphipoda13Notonectidae*3Empididae6IPh: 7.39Potamonautidae*3Pleidae*4Ephydridae3II69.8/ 87.3%Atyidae8Veliidae/Mveliidae*5AAMuscidae1IICond:22.0 mS/mPalaemonidae10MEGALOPTERA:IPsychodidae1III<
Ph: 7.39 Potamonautidae* 3 Pleidae* 4 Ephydridae 3 Image: Condent cond
69.8/ 87.3% Atyidae 8 Veliidae/Mveliidae* 5 A A Muscidae 1 I
Cond: 22.0 mS/mPalaemonidae10MEGALOPTERA:Psychodidae1MBIOTOPES SAMPLED:HYDRACARINA8BABCordalidae8Simuliidae5AASIC: TIME: minutesPLECOPTERA:Sialidae6Syrphidae*1MASOOC:Notonemouridae14TRICHOPTERATabanidae5MABEDROCK:Perlidae12Dipseudopsidae10Tipulidae5MAQUATIC VEG: DOM SP:EPHEMEROPTERAEcnomidae8GASTROPODAMMM VEG IC:DOM SP:Baetidae 1sp4Hydropsychidae 1sp4Ancylidae6MM VEG OOC:DOM SP:Baetidae 2sp6Hydropsychidae 2sp6Bulininae*3M
BIOTOPES SAMPLED: HYDRACARINA 8 B A B Cordalidae 8 Simulidae 5 A A SIC: TIME: minutes PLECOPTERA: Sialidae 6 Syrphidae* 1 SOOC: Notonemouridae 14 TRICHOPTERA Tabanidae 5 BEDROCK: Perlidae 12 Dipseudopsidae 10 Tipulidae 5 AQUATIC VEG: DOM SP: EPHEMEROPTERA Ecnomidae 8 GASTROPODA M VEG IC: DOM SP: Baetidae 1sp 4 Hydropsychidae 1sp 4 Ancylidae 6 M VEG OOC: DOM SP: Baetidae 2sp 6 Hydropsychidae 2sp 6 Hydropsychidae 2sp 6
SIC: TIME: minutes PLECOPTERA: Sialidae 6 Syrphidae* 1 Image: Syrphidae SOOC: Notonemouridae 14 TRICHOPTERA Tabanidae 5 Image: Syrphidae BEDROCK: Perlidae 12 Dipseudopsidae 10 Tipulidae 5 Image: Syrphidae AQUATIC VEG: DOM SP: EPHEMEROPTERA Ecnomidae 8 GASTROPODA Image: Syrphidae 1 Image: Syrphidae
SOOC: Notonemouridae 14 TRICHOPTERA Tabanidae 5 Image: Solid and
BEDROCK: Perlidae 12 Dipseudopsidae 10 Tipulidae 5 I I AQUATIC VEG: DOM SP: EPHEMEROPTERA Ecnomidae 8 GASTROPODA I I M VEG IC: DOM SP: Baetidae 1sp 4 Hydropsychidae 1sp 4 Ancylidae 6 I I M VEG OCC: DOM SP: Baetidae 2sp 6 Hydropsychidae 2sp 6 Bulininae* 3 I I
AQUATIC VEG: DOM SP: EPHEMEROPTERA Ecnomidae 8 GASTROPODA Image: Constraint of the second s
M VEG IC: DOM SP: Baetidae 1sp 4 Hydropsychidae 1sp 4 Ancylidae 6 Image: Constraint of the second secon
M VEG OOC: DOM SP: Baetidae 2 sp 6 Bulininae* 3 GRAVEL: Bestidae 2 sp 6 Bulininae* 3 Bulininae* 3 Bestidae 2 sp 12 Bestidae 2
SAND: Caenidae 6 B B B Philopotamidae 10 Lymnaeidae* 3
MUD: Ephemeridae 15 Polycentropodidae 12 Physidae* 3
HAND PICKING/VISUAL OBS: Heptageniidae 13 Psychomyiidae/Xiphocen. 8 Planorbidae* 3
FLOW: Leptophlebiidae 9 B B B CASED CADDIS: Thiaridae* 3
TURBIDITY: Oligoneuridae 15 Barbarochthonidae SWC 13 Viviparidae* ST 5
RIPARIAN LAND USE: Polymitarcyidae 10 Calamoceratidae ST 11 PELECYPODA
Prosopistomatidae 15 Glossosomatidae SWC 11 Corbiculidae 5
Teloganodidae SWC 12 Hydroptilidae 6 Sphaeriidae 3
Tricorythidae 9 Hydrosalpingidae SWC 15 Unionidae 6
ODONATA: Lepidostomatidae 10 SASS SCORE: 31 81 32 83
DISTURBANCE IN RIVER: Caloptervoidae ST.T 10 Leotoceridae 6 1 1 1 NO OF TAXA: 4 14 5 15
Chlorocypidae 10 Petrothrincidae SWC 11 ASPT: 7.75 5.79 6.40 5.53
Consortionada 4 B B Sericostamatidae SWC 13 OTHER BIOTA
SIGNS OF POLLUTION: Platycnemidae 10 Dytiscidae* 5 COMMENTS
Proto neurola 8 Elmidae/Dryonidae* 8
Zvinoteralius 6 Guinidad Solution 5 A A
Aschridae 8 Halinidae* 5 A
Codulida 8
OTHER OBSERVATIONS: Compliance 6 A A A Hydraenidae 8 SW/C - South Wastern Cane T - Tropical
Libelulidae 4 1 1 Hydrobidae 5 VC - all venetation ST - Sub-trained
Laborandado 7 1 1 1 Hydroprinidado 5 VO = all vegetalioni ST = Subretopican I EPIDOPTERA:

			RIVE	R HEA	LTH PI	ROGR	AMME - SASS 5 SCORE SH	IEET	Г									
DATE: 06-12-2017	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот
GRID REFERENCE:	PORIFERA	5					HEMIPTERA:						DIPTERA:					
S:°	COELENTERATA	1					Belostomatidae*	3					Athericidae	10				
E:°	TURBELLARIA	3		1		1	Corixidae*	3	Α	Α		В	Blepharoceridae	15				
SITE CODE:GD4	ANNELIDA:						Gerridae*	5					Ceratopogonidae	5	1	Α	Α	В
RIVER:	Oligochaeta	1					Hydrometridae*	6					Chironomidae	2	Α		Α	В
SITE DESCRIPTION:	Leeches	3					Naucoridae*	7					Culicidae*	1				
WEATHER CONDITION:	CRUSTACEA:						Nepidae*	3					Dixidae*	10				
TEMP:18.5 °C	A mphipo da	13					Notonectidae*	3					Empididae	6				
Ph: 6.97	Potamonautidae*	3					Pleidae*	4					Ephydridae	3				
DO: 8.24/99.1%ma/l	Atvidae	8					Veliidae/Myeliidae*	5		Α	Α	Α	Muscidae	1				
Cond: 38.0 mS/m	Palaemonidae	10					MEGALOPTERA:						Psvchodidae	1				
BIOTOPES SAMPLED:	HYDRACARINA	8		A		A	Cordalidae	8					Simuliidae	5				
SIC: TIME: minutes	PLECOPTERA:						Sialidae	6					Svrphidae*	1				
SOOC:	Notonemouridae	14					TRICHOPTERA						Tabanidae	5				
BEDROCK:	Perlidae	12	A			A	Dipseudopsidae	10					Tipulidae	5				
AQUATIC VEG: DOM SP:	EPHEMEROPTERA						Ecnomidae	8					GASTROPODA	-				
M VEGIC: DOM SP:	Baetidae 1sp	4	A				Hydropsychidae 1sp	4					Ancylidae	6				
M VEG OOC: DOM SP:	Baetidae 2 sp	6					Hydropsychidae 2 sp	6					Bulininae*	3				
GRAVEL:	Baetidae >2 sp	12		в		в	Hydropsychidae >2 sp	12					Hvdrobiidae*	3				
SAND	Caenidae	6	A	Ā	Δ	в		10					l vmnaeidae*	3				
MUD	Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
HAND PICKING/VISUAL OBS	Heptageniidae	13					Psychomyiidae/Xipho.cen	8					Planorbidae*	3				
FLOW		9	1		Δ	Δ	CASED CADDIS:	Ŭ					Thiaridae*	3				
	Oligoneuridae	15	· ·				Barbarochthonidae SWC	13					Viviparidae* ST	5				
RIPARIAN LAND USE:	Polymitarcyidae	10					Calamo ceratidae ST	11					PELECYPODA	Ť				
	Prosopistomatidae	15					Glossosomatidae SWC	11					Corbiculidae	5				
	Teloganodidae SWC	12					Hydroptilidae	6					Sphaeriidae	3				
	Tricorythidae	9					Hydrosalpingidae SWC	15					Unionidae	6				
	ODONATA	Ť						10					SASS SCORE:	Ŭ	46	56	37	90
	Caloptervoidae ST T	10						6		1		1	NO OF TAXA		40	10	7	30
DISTORBANCE IN RIVER.	Chloro cyphidae	10					Petrothrincidae SW/C	11					ASPT.		5 75	5.60	5 20	6.00
	Chlorolootidoo	0					Disuliidaa	10						7	20/	5.00	5.23	0.00
	Chiofolestidae	0		4		4	Pisulluae	10					ITAS.		3%			
	Lostidos	4		1		1		13					UTHER BIUTA:					
SIGNS OF DOLLUTION.	Disturgerridee	8					COLEOPTERA:	5					COMMENTE					
SIGNS OF POLLUTION:	Platychemidae						Dytiscidae	5										
		8	-				Elmidae/Dryopidae"	8										
	Zygoptera juvs.	6	-				Gyrinidae"	5	1			1	JUV fish x2					
	Aesnnidae	8 0		<u> </u>		<u> </u>	nalipidae"	5					* ojska otkoro					
		8		<u> </u>				12					^ = airbreathers					
DIHER OBSERVATIONS:	Gompnidae	6			A	A	Hydraenidae^	8			+		SVVC = South Wester	n Cap		= 1 ro	pical	
		4			1	A A	Hydrophilidae^	5					vG = all vegetation		51	= Sub-	tropica	1
		-	<u> </u>	<u> </u>	L			10					GSIVI = gravel, sand 8	mud	S	= Stor	ne & roo	ж
	Pyralidae	112	1	1	1	1	Psephenidae	10	1	1	1	1	1=1, A=2-10, B=10-100,	C=100	J-1000,	D=>10	00	6

			RIVE	R HEA	LTH P	ROGR	AMME - SASS 5 SCORE SH	IEET	Г									
DATE: 06-12-2017	TAXON		S	٧G	GSM	тот	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот
GRID REFERENCE:	PORIFERA	5					HEMIPTERA:						DIPTERA:					
S:°	COELENTERATA	1					Belostomatidae*	3					Athericidae	10				
E:°	TURBELLARIA	3					Corixidae*	3		Α		Α	B lepharo ceridae	15				
SITE CODE: GD5	ANNELIDA:						Gerridae*	5					Ceratopogonidae	5		1	Α	Α
RIVER:	Oligochaeta	1	1		1	Α	Hydrometridae*	6					Chironomidae	2		Α	Α	В
SITE DESCRIPTION:	Leeches	3					Naucoridae*	7		Α		Α	Culicidae*	1				
WEATHER CONDITION:	CRUSTACEA:						Nepidae*	3		1		1	Dixidae*	10				
TEMP: 23.7 °C	Amphipoda	13					Notonectidae*	3					Empididae	6				
Ph:7.92(100.7%)	Potamonautidae*	3		Α	Α	Α	Pleidae*	4					Ephydridae	3				
DO: 7.56 mg/l	Atyidae	8					Veliidae/Mveliidae*	5					Muscidae	1				
Cond: 33.0 mS/m	Palaemonidae	10					MEGALOPTERA:						Psychodidae	1				
BIOTOPES SAMPLED:	HYDRACARINA	8					Cordalidae	8					Simuliidae	5				
SIC: TIME: minutes	PLECOPTERA:						Sialidae	6					Syrphidae*	1				
SOOC:	Notonemouridae	14					TRICHOPTERA						Tabanidae	5	1			1
BEDROCK:	Perlidae	12					Dipseudopsidae	10					Tipulidae	5				1
AQUATIC VEG: DOM SP:	EPHEMEROPTERA						Ecnomidae	8					GASTROPODA					
M VEG IC: DOM SP:	Baetidae 1sp	4					Hydropsychidae 1sp	4					Ancylidae	6		Α		Α
M VEG OOC: DOM SP:	Baetidae 2 sp	6					Hydropsychidae 2 sp	6					Bulininae*	3				
GRAVEL:	Baetidae >2 sp	12	в	В	Α	В	Hydropsychidae >2 sp	12					Hydrobiidae*	3				
SAND:	Caenidae	6	Α	Α	Α	В	Philopotamidae	10					Lymnaeidae*	3				
M UD:	Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
HAND PICKING/VISUAL OBS:	Heptageniidae	13					Psychomyiidae/Xiphocen.	8					Plano rbidae*	3		Α		Α
FLOW:	Leptophlebiidae	9					CASED CADDIS:						Thiaridae*	3				
TUR BIDITY:	Oligoneuridae	15					Barbarochthonidae SWC	13					Viviparidae* ST	5				
RIPARIAN LAND USE:	Polymitarcyidae	10					Calamo ceratidae ST	11					PELECYPODA					
	Prosopistomatidae	15					Glossosomatidae SWC	11					Corbiculidae	5				
	Telogano didae SWC	12					Hydroptilidae	6					Sphaeriidae	3				
	Tricorythidae	9					Hydrosalpingidae SWC	15					Unionidae	6				
	ODONATA:						Lepidostomatidae	10					SASS SCORE:		48	68	58	85
DISTURBANCE IN RIVER:	Calopterygidae ST,T	10					Leptoceridae	6					NO OF TAXA:		8	13	11	17
	Chlorocyphidae	10	1	1	1	Α	Petrothrincidae SWC	11					ASPT:		6.00	5.23	5.27	5.00
	Chlorolestidae	8					Pisuliidae	10					IHAS:	7	71%			
	Coenagrionidae	4	A	A	Α	в	Sericostomatidae SWC	13					OTHER BIOTA:					
	Lestidae	8					COLEOPTERA:											
SIGNS OF POLLUTION:	Platycnemidae	10					Dvtiscidae*	5			Α	Α	COMMENTS					
	Protoneuridae	8					Elmidae/Drvopidae*	8					LIM VEG+GSM					
	Zvgoptera juvs.	6					Gvrinidae*	5										
	Aeshnidae	8					Halipidae*	5										
	Corduliidae	8					Helodidae	12			1		* = airbreathers					
OTHER OBSERVATIONS:	Gomphidae	6	Α		Α	A	Hydraenidae*	8			1		SWC = South Wester	n Car	ре Т	= Tro	oical	
	Libellulidae	4	1	Α	Α	A	Hydrophilidae*	5			1		VG = all vegetation		ST	= Sub-	tropica	l
	LEPIDOPTERA:						Limnichidae	10			1		GSM = gravel, sand &	mud	S	= Stor	ne & roo	ck
	Pyralidae	12					Psephenidae	10					1=1, A=2-10, B=10-100,	C=10	0-1000,	D=>10	00	

DATE: OF-2007 TAXON IS VG GSM TOT TAXON IS VG GSM A A A B B C IS VG GSM Tot TAXON IS VG GSM Tot TAXON IS VG GSM Tot TAXON IS VG <				RIVE	R HEA	LTH P	ROGR	AMME - SASS 5 SCORE SH	IEET	Г									
GRID REFERENCE: PORIFERA: Column Free Net Column Dim TERA: Dim TE	DATE: 05-12-2017	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот
S* COBLENTERATA 1 I <	GRID REFERENCE:	PORIFERA	5					HEMIPTERA:						DIPTERA:					
E." TUR BELLARIA 3 I A Bephancendage 5 Image STE CODE:11 ANELDA: Image Gardage S Image Carabogondage S Image A A Bephancendage S Image A A A Becked S Image A A Becked Carabogondage S Image A A Becked Carabogondage S Image A A A A Becked S Image Carabogondage S Image A A A A Becked S Image Diskdage S Image Dimage Diskdage Diskdage	S:°	COELENTERATA	1					Belostomatidae*	3					Athericidae	10			1	1
STE CODE:T1 ANNELIDA: Image: Step Code and a step	E:°	TURBELLARIA	3					Corixidae*	3		1	Α	Α	B lepharo ceridae	15				
RIVER: Oligochaeta 1 Image: Chiconomiage 2 Image: Chiconomiage 1 Image: Chiconomiage	SITE CODE: T1	ANNELIDA:						Gerridae*	5					Ceratopogonidae	5				
SITE DESCRIPTION: Leaches 3 A A A A A A B Culcidae' 1 I	RIVER:	Oligochaeta	1					Hydrometridae*	6					Chironomidae	2		Α		Α
WEATHER CONDITION: CRUSTACEA: No Nepidae* 3 No Diskate* 0 No Diskate* 0 No No </td <td>SITE DESCRIPTION:</td> <td>Leeches</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>Naucoridae*</td> <td>7</td> <td>Α</td> <td>Α</td> <td>Α</td> <td>В</td> <td>Culicidae*</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	SITE DESCRIPTION:	Leeches	3					Naucoridae*	7	Α	Α	Α	В	Culicidae*	1				
TEMP: 72 ° C Amphipoda B C Notonecial 3 1 1 Eprodicate 6 Image: Constraint of the c	WEATHER CONDITION:	CRUSTACEA:						Nepidae*	3					Dixidae*	10				
Ph: 7a0 Potamonautidae* 3 A N Palemonidae* 4 N Epyderidae 3 A N N Cond: 460 mS/m Palaemonidae 0 0 A MEdoLPTERA: 0 A MEdoLPTERA: 0 A Psychodidae 1 A A BIOTOPE SAMP LED: HYDRACARNA 8 Condidae 6 A Signidae 1 A A SG: TME: minutes PLECOPTERA: A A MEdoLPTERA 6 A Signidae 5 A A SOCC: Peridee 2 A A A Hydropsychidae 19 4 1 A </td <td>TEMP:27.2 °C</td> <td>Amphipoda</td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td>Notonectidae*</td> <td>3</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>Empididae</td> <td>6</td> <td></td> <td></td> <td></td> <td></td>	TEMP:27.2 °C	Amphipoda	13					Notonectidae*	3		1		1	Empididae	6				
DO: 673 mg/l Avidae 8 Image: Cond: 460 ms/m Miscidae 1 Image: Cond: 460 ms/m BIOTOPES SAM PLED: HYDRACARINA 8 Image: Cond: 460 ms/m Miscidae 8 Image: Cond: 460 ms/m Psycholdae 1 Image: Cond: 460 ms/m SIC: TIME: minutes PLECOPTERA: Image: Cond: 460 ms/m 8 Image: Cond: 460 ms/m Signalidae 6 Image: Cond: 460 ms/m 1 Image: Cond: 460 ms/m Signalidae 6 Image: Cond: 460 ms/m 1 Image: Cond: 460 ms/m	Ph: 7.90	Potamonautidae*	3		Α		Α	Pleidae*	4					Ephydridae	3				
Cond: 460 mS/m Pataemonidae 0 M M M Decla DP TER A: N Psychoddae 1 N N SIC: TME: minutes PLECO PTER A: Image: Conductation of the conductation of	DO: 6.73 mg/l	Atyidae	8					Veliidae/Mveliidae*	5					Muscidae	1				
BIOTOPES SAMPLED: HYDRACARINA 8 A C Simulidae 6 C Simulidae 5 C C SIC: TME: minutes PLEOPTERA: A A Similate 6 A Similate 6 A Similate 5 A A SOC: TME: minutes Perifide Q C TRICHOPTERA C Tabanidae 5 A A BEDROCK: Perifide Q C Dispendopsidae 0 A A A Approprint (Approprint (Appro	Cond: 46.0 mS/m	Palaemonidae	10					MEGALOPTERA:						Psvchodidae	1				
SIC: TME: minutes PLECOPTERA: Image: Sice of the second seco	BIOTOPES SAMPLED:	HYDRACARINA	8					Cordalidae	8					Simuliidae	5				
SOOC: Notonemoundae 14 Notonemoundae 14 Notonemoundae 14 Notonemoundae 15 Notonemoundae 16 Notonemound	SIC: TIME: minutes	PLECOPTERA:						Sialidae	6					Svrphidae*	1				
BEDROCK: Peridae P Image: Constraint of the second sec	SOOC:	Notonemouridae	14					TRICHOPTERA						Tabanidae	5				
ACUATC VEG: DOM SP: EPH MEROPTERA Image: Construct of the second sec	BEDROCK:	Perlidae	12					Dipseudopsidae	10					Tipulidae	5				
M YEG (C: DOM SP: Baetidae 2 sp 6 A A Hydropsychidae 2 sp 6 I Anopliate 6 I Anopliate 6 I Anopliate 6 I Anopliate 6 I Interview 3 I I M VEG OOC: DOM SP: Baetidae 2 sp 6 I Hydropsychidae 2 sp 6 I Hydropsychidae 2 sp 6 Interview 3 I I Interview 3 I Interview 3 Interview 1 Hydropsychidae 2 sp 6 Interview 3 Interview 1 Hydropsychidae 2 sp 6 Interview 1 Hydropsychidae 2 sp 1 1 A A A A A A A A Specidae 1 <td>AQUATIC VEG: DOM SP:</td> <td>EPHEMEROPTERA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ecnomidae</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>GASTROPODA</td> <td></td> <td></td> <td></td> <td></td> <td></td>	AQUATIC VEG: DOM SP:	EPHEMEROPTERA						Ecnomidae	8					GASTROPODA					
M VEG OOC: DOM SP: Baetidae 2 sp 6 Image: Specific and Sp	M VEGIC: DOM SP:	Baetidae 1sp	4	A		Α	A	Hvdropsvchidae 1sp	4	1			1	Ancylidae	6				
GRAVEL: Baetidae >2 sp 1/2 N Hydropsychidae >2 sp 1/2 N Hydropside 3/2 N N N SAND: Caenidae 6 A A B Philoptamidae 0 Lymnaeidae' 3 C Image: Constraint of the system of the	M VEG OOC: DOM SP:	Baetidae 2 sp	6					Hvdropsvchidae 2 sp	6					Bulininae*	3				
SAND: Caenidae 6 A A B Philopotamidae 0 L Lymnaeidae* 3 Image: Constraints MUD: Ephemeridae 15 Poycentropodidae 2 Physidae* 3 A A HADD PICKING/VISUALOBS: Heptagenidae 9 A A B Poycentropodidae 2 Planotidae* 3 A A FLOW: Leptophlebidae 9 A A B CASED CADDIS: Planotidae* 3 A A A TURBIDITY: Oligoneuridae 15 C Calamoceraidae ST 11 PetectYPODA C C Image: Constraidae 5 Image: Constraidae 6 A A Sphaeriidae 5 Image: Constraidae 5	GRAVEL:	Baetidae >2 sp	12					Hvdropsvchidae >2 sp	12					Hvdrobiidae*	3				
MUD: Ephemeridae 5 Image: Constraint of the system o	SAND:	Caenidae	6	A	A	Α	в	Philopotamidae	10					Lvmnaeidae*	3				
HAND PICKING/VISUAL OBS: Heptageniidae 13 A A A B CASED CADDIS: B A B A CADDIS Componentidae B C CADDIS Componentidae B A	M UD:	Ephemeridae	15					Polycentropodidae	12					Physidae*	3		Α		Α
FLOW: Leptophlebildae 9 A A B CASED CADDIS: I I Thiaridae* 3 I I TURBIDITY: Oligoneuridae 16 Barbarochthonidae SWC 13 Viviparidae*ST 5 I I RIPARIAN LAND USE: Polymitarovidae 16 Calanocaratidae ST 11 Prosopistomatidae*ST 11 Image: State Stat	HAND PICKING/VISUAL OBS:	Heptageniidae	13					Psychomyjidae/Xiphocen.	8					Planorbidae*	3		Α		Α
TURBIDITY: Oligoneuridae 15 Image: State of the state of th	FLOW:	Leptophlebiidae	9	A		Α	в	CASED CADDIS:						Thiaridae*	3				
RIPARIAN LAND USE: Polymitarcyidae 10 Calamoceratidae ST 11 C PELECYPODA C C C Prosopistomatidae 15 C Glossosomatidae SWC 11 C Corbiculidae 5 C C Teloganodidae SWC 12 Hydrosalpingidae SWC 16 A A Space 5 C C Corbiculidae 5 C C C Tricorythidae 9 Hydrosalpingidae SWC 16 A A Space 5 6 5 5 5 5 6 5 5 5 5 6 5 5 6 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 5	TURBIDITY	Oligoneuridae	15					Barbarochthonidae SWC	13					Viviparidae* ST	5				
Prosopistomatidae 15 Image: Construction of the construction of t	RIPARIAN LAND USE:	Polymitarcyidae	10					Calamo ceratidae ST	11					PELECYPODA					
Telogano didae SWC 12 1 Hydroptilidae 6 A A Sphaeriidae 3 I I I Tricorythidae 9 9 1 Hydrosalpingidae SWC 15 1 Unionidae 6 I		Prosopistomatidae	15					Glossosomatidae SWC	11					Corbiculidae	5				
Tricorythidae 9 0 Hydrosalpingidae SWC 15 0 Unionidae 6 0 10 1		Telogano didae SWC	12					Hvdroptilidae	6	Α			Α	Sphaeriidae	3				
ODONATA: O O Depidestomatidae O SASS SCORE: 50 57 58 95 DISTURBANCE IN RIVER: Calopterygidae ST,T 10 Image: Calopterygi		Tricorythidae	9					Hydrosalpingidae SWC	15					Unionidae	6				
DISTURBANCE IN RIVER: Calophynitha Image: Calophynithal additional additext additintext additext additional additintext additintext addit		ODONATA:	-						10					SASS SCORE:	-	50	57	58	95
Concepting add of the second secon	DISTURBANCE IN RIVER	Caloptervoidae ST T	10						6					NO OF TAXA		9	13	10	19
Chlorolestidae 8 - - Pisulidae 10 - <td></td> <td>Chlorocyphidae</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>Petrothrincidae SWC</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td>ASPT</td> <td></td> <td>5 56</td> <td>4 38</td> <td>5.80</td> <td>5.00</td>		Chlorocyphidae	10					Petrothrincidae SWC	11					ASPT		5 56	4 38	5.80	5.00
Onionicitation 0		Chlorolestidae	8					Pisuliidae	10					IH A S	6	5%		0.00	0.00
Signs of Pollution: Playcnemidae 8 Image: College of the college		Coepagriopidae	4	•	в	Δ	в	Sericostomatidae SWC	13					OTHER BIOTA		570			
SIGNS OF POLLUTION: Platycnemidae 10 I Dytiscidae* 5 A A A COMMENTS: Proto neuridae 8 I Image: Signa Si		Lestidae	8	<u> </u>	<u> </u>		-	COLEOPTERA	Ň					OTHER DIOTA:					
Independent Independent Image: Construction of the construction o		Platycnemidae	10					Dytiscidae*	5		Δ		Δ	COMMENTS					
Aeshnidae 6 7 6 6 6 7 6 6 6 7 6 7 6 7 6 7		Protoneuridae	8					Elmidae/Dryopidae*	8				<u> </u>	COMMENTS:					
Ageshnidae 8 Image: Column and the state of the		Zvgopterajuvs	6					Gyrinidae*	5			•	•						
Activitation O <t< td=""><td></td><td></td><td>8</td><td></td><td>-</td><td></td><td></td><td>Halinidae*</td><td>5</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			8		-			Halinidae*	5				<u> </u>						
OTHER OBSERVATIONS: Gomphidae 6 A 1 A A Hydraenidae* 8 1 1 SWC = South Western Cape T = Tropical Libelluidae 4 1 A A Hydraenidae* 5 0 VG = all vegetation ST = Sub-tropical Libelluidae 4 1 A A Hydrophilidae* 5 0 VG = all vegetation ST = Sub-tropical LEP IDOPTERA: 0 0 0 0 GSM = gravel, sand & mud S = Stone & rock		Corduliidae	8		-			Helodidae	12			1		* – airbreathers					
Libelluidae 4 1 A A Hydraenidae 5 VG = all vegetation ST = Sub-tropical Libelluidae 4 1 A A Hydraenidae 5 VG = all vegetation ST = Sub-tropical Libelluidae 4 1 A A Hydraenidae 5 VG = all vegetation ST = Sub-tropical Libelluidae 4 1 A A Hydraenidae 5 VG = all vegetation ST = Sub-tropical GSM = gravel, sand & mud S = Stone & rock Stone & rock Stone & rock Stone & rock	OTHER OBSERVATIONS	Gomphidae	6	Δ	1	Δ	Δ	Hydraenidae*	8		1	1	1	SWC - South Wester	n Car	а т	- Tro	nical	
Librariade Image: Construction	offick observations.	Libellulidae	4	1	Δ			Hydrophilidae*	5			+		VG - all vegetation	ιodμ	л 57 Т2	- Sub-	tronica	
			+-	-	+^-	<u> </u>	<u>⊢</u> ^	Limnichidae	10			1		GSM – gravel cand 8	mud	01	- Stor		- k
$D_{vralidae}$ 12 Dependencidae 10 Dependencidae 10 14-1 A - 2 10 D - 40 100 C - 400 1000 D - 4000		Byralidae	12			<u> </u>	<u> </u>	Psenhenidae	10		-	+		1-1 A -2-10 B -10 100	C_10/	n_1000	D_\10	00	

			RIVE	R HEA	LTH PI	ROGR	AMME - SASS 5 SCORE SH	IEET	Г									
DATE: 05-12-2017	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот
GRID REFERENCE:	PORIFERA	5					HEMIPTERA:						DIPTERA:					
S:°	COELENTERATA	1					Belostomatidae*	3					Athericidae	10				\square
E:°	TURBELLARIA	3					Corixidae*	3			Α	Α	B lepharo ceridae	15				
SITE CODE: KD1	ANNELIDA:						Gerridae*	5					Ceratopogonidae	5		Α		Α
RIVER:	Oligochaeta	1					Hydrometridae*	6					Chironomidae	2		Α	Α	В
SITE DESCRIPTION:	Leeches	3					Naucoridae*	7		1	1	Α	Culicidae*	1				
WEATHER CONDITION:	CRUSTACEA:						Nepidae*	3					Dixidae*	10				
TEM P: 27.9 °C	Amphipoda	13					Notonectidae*	3					Empididae	6				\square
Ph: 7.90	Potamonautidae*	3					Pleidae*	4					Ephydridae	3				
DO: 7.08/100.2% mg/l	Atvidae	8					Veliidae/Myeliidae*	5		Α		Α	Muscidae	1				
Cond: 35.0 mS/m	Palaemonidae	10					MEGALOPTERA:						Psvchodidae	1				
BIOTOPES SAMPLED:	HYDRACARINA	8		A		A	Cordalidae	8					Simuliidae	5		Α	Α	В
SIC: TIME: minutes	PLECOPTERA:						Sialidae	6					Svrphidae*	1				
SOOC:	Notonemouridae	14					TRICHOPTERA						Tabanidae	5				
BEDROCK:	Perlidae	12					Dipseudopsidae	10					Tipulidae	5				
AQUATIC VEG: DOM SP:	EPHEMEROPTERA						Ecnomidae	8					GASTROPODA					
M VEGIC: DOM SP:	Baetidae 1sp	4					Hydropsychidae 1sp	4		1		1	Ancylidae	6		1		1
M VEG OOC: DOM SP:	Baetidae 2 sp	6			Α		Hydropsychidae 2 sp	6					Bulininae*	3				
GRAVEL:	Baetidae >2 sp	12		в		в	Hvdropsvchidae >2 sp	12					Hvdrobiidae*	3				
SAND:	Caenidae	6			Α	A	Philopotamidae	10					Lvmnaeidae*	3				
M UD:	Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
HAND PICKING/VISUAL OBS:	Heptageniidae	13		1		1	Psychomyiidae/Xiphocen.	8					Planorbidae*	3				
FLOW:	Leptophlebijdae	9		1		1	CASED CADDIS:						Thiaridae*	3				
TURBIDITY	Oligoneuridae	15					Barbarochthonidae SWC	13					Viviparidae* ST	5				
RIPARIAN LAND USE:	Polymitarcvidae	10					Calamo ceratidae ST	11					PELECYPODA					
	Prosopistomatidae	15					Glossosomatidae SWC	11					Corbiculidae	5				
	Teloganodidae SWC	12					Hydroptilidae	6					Sphaeriidae	3				
	Tricorythidae	9					Hydrosalpingidae SWC	15					Unionidae	6				
	ODONATA:	-						10					SASS SCORE	-	0	117	45	130
DISTURBANCE IN RIVER	Caloptervoidae ST T	10		1		1		6		Δ	1	Δ	NO OF TAXA		0	17	9	20
	Chlorocyphidae	10		1		1	Petrothrincidae SWC	11		~	· ·	~	ASPT		0.00	6.88	5.00	6.50
	Chlorolestidae	8		· ·		<u> </u>	Pisuliidae	10						5	10/2	0.00	0.00	0.00
	Coepagriopidae	1		•		•	Sericostomatidae SWC	13					OTHER BIOTA		170			
	Lostidao	4		<u>^</u>		<u> </u>		ю					OTHER BIOTA.					
SIGNS OF BOLLUTION.	Platycopomidao	10					Duticoidoo*	Б					COMMENTS					
SIGNS OF FOLLOTION.	Protopouridao	0					Elmidao/Dryopidao*	0					COMMENTS.					
		6	-				Cyripidae*	5		1		1						
		0	-					5		•		-						
	Corduliidoo	0				<u> </u>		10					* – airbreathers					
OTHER ORSERVATIONS.	Gomphidae	ĥ	<u> </u>	•			Ludroopidoo*	_ <u>∠</u>		<u> </u>	+			n C	<u>, т</u>	- Tro-	nicol	
OTHER OBSERVATIONS:	Libollulidoo	0						0			+	-	VC ell vogetetier	псар	יש שי ריס	= 110	tropica	
		4			A	<u> </u>	Limpichidae	10			+				31	= Sub-		
	Directidee	10	<u> </u>	<u> </u>		<u> </u>		10	<u> </u>	<u> </u>		<u> </u>			ۍ ۱۹۵۵۵	= 510r		JK
	Pyralidae	112	1	1	1	1	rsephenidae	10	1	1	1	1	⊨ i, A = 2-10, B = 10-100,	U=100	J-1000,	U=>10	00	1

			RIVE	R HEA	LTH PI	ROGR	AMME - SASS 5 SCORE SH	HEET	Г									
	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот	TAXON		S	VG	GSM	тот
	PORIFERA	5					HEMIPTERA:						DIPTERA:					
	COELENTERATA	1					Belostomatidae*	3					Athericidae	10				
	TURBELLARIA	3					Corixidae*	3	1		Α	Α	B lepharo ceridae	15				
	ANNELIDA:				Α	Α	Gerridae*	5		Α		Α	Ceratopogonidae	5	Α	Α	Α	В
	Oligochaeta	1					Hydrometridae*	6					Chironomidae	2	Α	Α	Α	В
	Leeches	3					Naucoridae*	7					Culicidae*	1		1	\square	1
	CRUSTACEA:						Nepidae*	3		Α		Α	Dixidae*	10				
	Amphipoda	13					Notonectidae*	3		1	1	Α	Empididae	6			\square	
	Potamonautidae*	3	Α			Α	Pleidae*	4					Ephydridae	3				
	Atyidae	8					Veliidae/Mveliidae*	5		Α		Α	Muscidae	1			\square	
	Palaemonidae	10					MEGALOPTERA:						Psychodidae	1				
D:	HYDRACARINA	8					Cordalidae	8					Simuliidae	5		Α		Α
	PLECOPTERA:						Sialidae	6					Syrphidae*	1				
	Notonemouridae	14					TRICHOPTERA						Tabanidae	5				
	Perlidae	12					Dipseudopsidae	10					Tipulidae	5				
P:	EPHEMEROPTERA						Ecnomidae	8					GASTROPODA					
	Baetidae 1sp	4					Hydropsychidae 1sp	4		1		1	Ancylidae	6				
):	Baetidae 2 sp	6					Hydropsychidae 2 sp	6					Bulininae*	3				
	Baetidae >2 sp	12	В	В	в	В	Hydropsychidae >2 sp	12					Hydrobiidae*	3				
	Caenidae	6	A	Α		В	Philopotamidae	10					Lymnaeidae*	3				
	Ephemeridae	15					Polycentropodidae	12					Physidae*	3				
OBS:	Heptageniidae	13					Psychomyiidae/Xiphocen.	8					Planorbinae*	3	Α	1		Α
	Leptophlebiidae	9	A			A	CASED CADDIS:						Thiaridae*	3				
	Oligoneuridae	15					Barbarochthonidae SWC	13					Viviparidae* ST	5				
:	Polymitarcyidae	10					Calamo ceratidae ST	11					PELECYPODA					
	Prosopistomatidae	15					Glossosomatidae SWC	11					Corbiculidae	5				
	Teloganodidae SWC	12					Hydroptilidae	6			1	1	Sphaeriidae	3				
	Tricorythidae	9					Hydrosalpingidae SWC	15					Unionidae	6				
	ODONATA:						Lepidostomatidae	10					SASS SCORE:		62	85	41	112
VER:	Caloptervoidae ST.T	10						6					NO OF TAXA:		12	18	9	24
	Chlorocyphidae	10					Petrothrincidae SWC	11					ASPT:		5.17	4.72	4.56	4.67
	Chlorolestidae	8					Pisuliidae	10					IHAS	7	'3%			
	Coenagrionidae	4	1	Δ		Δ	Sericostomatidae SWC	13					OTHER BIOTA		070		I	
	Lestidae	8	<u> </u>			<u> </u>												
N·	Platycnemidae	10					Dytiscidae*	5		Δ		Δ	COMMENTS					
	Protoneuridae	8					Elmidae/Dryopidae*	8										
	Zvgopterajuvs	6					Gvrinidae*	5	в	Δ		в						
	Aeshnidae	8		Δ		Δ	Halipidae*	5										
	Corduliidae	8		⊢^		<u>⊢</u> ^	Helodidae	12			1		* = airbreathers					
ONS	Gomphidae	6	Δ		Δ	в	Hydraenidae*	8			1		SWC = South Wester	n Car	ne T	= Tro	nical	
	Libellulidae	4		1	Δ	B	Hydrophilidae*	5		1		1	VG = all vegetation = ST = Sub transical				d	
		⊢	⊢^	<u> </u>	<u> </u>	<u> </u>	Limnichidae	10		- ·	1		GSM – gravel sand & mud S – Stope & rock				ck	
	Pyralidae	12		<u> </u>			Psenhenidae	10		1	1	1	1-1 Δ-2-10 B-10-100 C-100-1000 D			00		
	D: P: P: D: OBS: E: IVER: IVER: N: ONS:	TAXON PORIFERA COELENTERATA TURBELLARIA ANNELIDA: Oligo chaeta Leeches CRUSTACEA: Amphipoda Potamonautidae* Atyidae Palaemonidae D: HYDRACARINA PLECOPTERA: Notonemouridae Perlidae Perlidae Perlidae Perlidae Saetidae 1sp Baetidae 2 sp Baetidae 2 sp Caenidae Ephemeridae OBS: Heptageniidae Leptophlebiidae Oligoneuridae Prosopistomatidae Teloganodidae SWC Tricorythidae ODONATA: IVER: Calopterygidae ST,T Chlorolestidae Coenagrionidae Lestidae N: Platycnemidae Protoneuridae Zygoptera juvs. Aeshnidae Corduliidae ONS: Gomphidae L	TAXON PORIFERA 5 COELENTERATA 1 TURBELLARIA 3 ANNELIDA: 0 Oligochaeta 1 Leeches 3 CRUSTACEA: Amphipoda Amphipoda 13 Potamonautidae* 3 Atyidae 8 Palaemonidae 10 D: HYDRACARINA PLECOPTERA: Notonemouridae Notonemouridae 14 Perlidae 12 P: EPHEMEROPTERA Baetidae 1sp 4 2: Baetidae 2sp 6 Baetidae 2sp 12 Caenidae 6 Ephemeridae 15 OBS: Heptageniidae 13 Leptophlebiidae 9 0 Oligoneuridae 15 16 E: Polymitarcyidae 10 Prosopistomatidae 15 16 Coenagrionidae 4 16 Tricorythidae 9 0 ODONATA:	TAXON S PORIFERA 5 COELENTERATA 1 TURBELLARIA 3 ANNELIDA: 1 Oligochaeta 1 Leeches 3 CRUSTACEA: 1 Amphipoda 13 Potamonautidae* 3 Atyidae 8 Palaemonidae 10 D: HYDRACARINA PLECOPTERA: 1 Notonemouridae 14 Perlidae 12 P: EPHEM EROPTERA : Baetidae 1sp 2: Baetidae 2sp : Imageniidae : Coenidae : Imageniidae : Imageniidae <	TAXON S VG PORIFERA 5 COELENTERATA 1 TURBELLARIA 3 ANNELIDA: 1 Oligochaeta 1 Leeches 3 CRUSTACEA: 1 Amphipoda 13 Potamonautidae* 3 Atyidae 8 Palaemonidae 0 D: HYDRACARINA PLECOPTERA: 1 Notonemouridae 14 Perlidae 12 P: EPHEMEROPTERA : Baetidae 1sp 4 14 P: EPHEMEROPTERA : Baetidae 2sp 6 A A Ephemeridae 0BS: Heptageniidae 13 E Prosopistomatidae 15 Tricorythidae 9 ODIONATA: 10 VER: Calopterygidae ST,T 14 A 15 Chlorolestidae 8 Coenagrionidae	TAXON S VG GSM PORIFERA 5 VG GSM COELENTERATA 1 Image: Comparison of the system of the syst	TAXON S VG GSM TOT PORIFERA 5	TAXON S VG GSM TOT TAXON PORIFERA 5 HEM IPTERA: COELENTERATA Belostomaidae" TURB ELLARIA 3 Corixidae" A A Gerridae" Oligochaeta 1 A A Gerridae" Oligochaeta 1 Hydrometridae" CRUSTACEA: Imacoridae Nepidae Nepidae" A A Peridae" Amphipoda 13 Imacoridae" Nepidae" A A Peridae" Atyidae 8 Imacoridae 10 Imacoridae" Methode" A D: HYDRACARINA 8 Imacoridae Cordalidae Enomidae Diseudopsidae Peridae 10 Imacoridae 10 Imacoridae Diseudopsidae Peridae Peridae 2 Imacoridae Diseudopsidae Pise Peridae 10 Imacoridae A Peridae 10 Imacoridae 10	TAXON S VG GSM TOT TAXON PORIFERA 5 VG GSM TOT TAXON COELENTERATA 1 Belostomatidae* 3 TURBELLARIA 3 Corvidae* 3 ANNELIDA: A A Gerridae* 5 Oligochaeta 1 Hydrometridae* 6 Leeches 3 Naucoridae* 3 Amphipoda 13 Notonectidae* 3 Amphipoda 13 Notonectidae* 4 Atyidae 8 Velidae/Mvelidae* 4 Atyidae 8 Velidae/Mvelidae* 6 Palaemonidae 10 MECALOPTERA: Sialidae 6 Notonemouridae 14 TRICHOPTERA Sialidae 8 6 Peridae 2 Dipseudopsidae 0 6 8 4 2 Baetidae 2sp 6 Hydropsychidae 2sp 6 2 2 2 2 2 2 2 2 3 2 3 4	TAXON S VG GSM VG TAXON S PORIFERA 5 VG GSM HEMIPTERA: S COELENTERATA 1 Belostomatidae* 3 1 ANNELIDA: A A Goridae* 3 1 Conidae* 3 1 ANNELIDA: A A Goridae* 3 1 Hydrometridae* 6 Oligochaeta 1 A A Goridae* 3 3 Amphipoda 13 A Naucoridae* 7 CRUSTACEA: Naucoridae* 4 Atydae 8 A Nepidae* 3 A 4 4 Atydae 8 Cordalidae 6 B 5 Palaemonidae 4 A D: HYDRACARINA 8 Cordalidae 8 B Pelfidae 0 Peridae 2 Dipseudopsidae 0 Peridae 2 Baetidae 12p 4 Perididae 1	RIVER HEALTH PROGRAMME - SASS SCORE SHEET TAXON S VG GSM TOT TAXON S VG PORIFERA 5 VG GSM TOT TAXON S VG COELENTERATA 1 Belostomatidae* 3 1 ANNELIDA: A A Gerridae* 3 1 ANNELIDA: A A Gerridae* 5 A Oligochaeta 1 Hydrometridae* 7 C CRUSTACEA: Naucoridae* 7 1 1 Potamonautidae* 3 A A Pleidae* 3 1 Potamonautidae* 0 MEGALOPTERA: Sialidae 6 1 Notonemouridae 14 TRICHOPTERA 5 A Perifidae 2 Dijseudopsidae 10 1 Palaemonidae 1 TRICHOPTERA 1 1 Perifidae 2 Dijseudopsidae 1 1	RIVER HEALTH PROGRAMME - SASS SOCRE SHEET PORIFERA S VG GSM DT TAXON S VG GSM COELENTERATA 1 A Belostomatidae* 3 1 A ANNELIDA: A A Gerridae* 3 1 A Oblgochaeta 1 A A Gerridae* 3 1 A CRUSTACEA: 1 A A Gerridae* 3 A A Amphipoda 13 A Nepidae* 3 A A Pataemonautidae* 3 A A Pelidae* 4 A Palaemonidae 0 MEGALOPTERA: A Disudae* 5 A Palaemonidae 1 TRICHOPTERA Sialidae 6 A A Peridae 2 Dipseudopsidae 0 A A A Peridae 2 Dipseudopsychidae 2 sp 6 A A	TAXON S VG SSN TOT SSS SSCOR SSN TOT PORIFERA 5 VG SSN TOT TAXON S VG SSN TOT COELENTERATA 1 Belostomatidae' 3 1 A A TURBELLARIA 3 Condeac' 5 A A A ANNEUDA: A A Geridae' 5 A A CRUSTACEA: Napidae' 3 A A A CRUSTACEA: Napidae' 3 A A A Aptimonautidae' 3 A A A A Aptimonautidae' 3 A A A A Aptimonautidae 8 Velidae/M.velidae' 5 A A Potamonautidae 0 MEGALOPTERA: A A A Peledoe 1 1 A Cordalidae 8 A A Peledoe 1 1	RIVER HEALTH PROGRAMME - SASS SCORE SHEET TAXON S VG GSM TOT TAXON PORIFERA S VG GSM TOT TAXON COELENTERATA 1 HEMPTERA: DIPTERA: COELENTERATA 1 A A theracidae COELENTERATA 1 A </td <td>RIVER HEALTH PROGRAMME - SASS 5 SCORE 5HET Y GO S Y G SN TOT TAXON S Y G SN TOT TAXON PORIFERA 5 V SN TOT TAXON S VG SN TOT TAXON DIPTERA: DIPTERA: DIPTERA: DIPTERA: N DIPTERA: N DIPTERA: N A A Hericidae: 3 1 A A A Geridae: 3 1 A A Geridae: 7 Culicidae: 1 A A Geridae: 1 A</td> <td>RIVER HEALTH PROGRAMME - SASS SCORE SHEET TAXON S VG SN VG VG SN VG</td> <td>TAXON RMCR HEALTH PROGRAMME - SASS SQCRE SHEET S VG GSM TOT TAXON Ta</td> <td>TAXON S VG 6 SM TOT TAXON S VG 0 SM TOT TAXON S A</td>	RIVER HEALTH PROGRAMME - SASS 5 SCORE 5HET Y GO S Y G SN TOT TAXON S Y G SN TOT TAXON PORIFERA 5 V SN TOT TAXON S VG SN TOT TAXON DIPTERA: DIPTERA: DIPTERA: DIPTERA: N DIPTERA: N DIPTERA: N A A Hericidae: 3 1 A A A Geridae: 3 1 A A Geridae: 7 Culicidae: 1 A A Geridae: 1 A	RIVER HEALTH PROGRAMME - SASS SCORE SHEET TAXON S VG SN VG VG SN VG	TAXON RMCR HEALTH PROGRAMME - SASS SQCRE SHEET S VG GSM TOT TAXON Ta	TAXON S VG 6 SM TOT TAXON S VG 0 SM TOT TAXON S A

APPENDIX E - Specialist information

DETAILS, EXPERTISE AND CURRICULUM VITAE OF SPECIALISTS

1. (a) (i) Details of the specialist who prepared the report

Stephen van Staden MSc (Environmental Management) (University of Johannesburg)

1. (a). (ii) The expertise of that specialist to compile a specialist report including a curriculum vitae

Company of Specialist:	Scientific Aquatic Services								
Name / Contact person:	Stephen van Staden								
Postal address:	29 Arterial Road West, Oriel, Bedfordview								
Postal code:	2007	Cell:	083 415 2356						
Telephone:	011 616 7893	Fax:	011 615 6240/ 086 724 3132						
E-mail:	stephen@sasenvgroup.co.za								
Qualifications	MSc (Environmental Management) (University of Johannesburg)								
	BSc (Hons) Zoology (Aquatic Ecology) (University of Johannesburg)								
	BSc (Zoology, Geography and Environmental Management) (University of Johannesburg)								
Registration / Associations	Registered Natural Professional Scientist at South African Council for Natural Scientific								
	Professions (SACNASP)								
	Accredited River Health Pract	itioner by the So	outh African River Health Program (RHP)						
	Member of the South African Soil Surveyors Association (SASSO)								
	Member of the Gauteng Wetland Forum								

SCIENTIFIC AQUATIC SERVICES (SAS) – SPECIALIST CONSULTANT INFORMATION

CURRICULUM VITAE OF STEPHEN VAN STADEN

PERSONAL DETAILS

Position in Company	Managing member, Ecologist, Aquatic Ecologist
Date of Birth	13 July 1979
Nationality	South African
Languages	English, Afrikaans
Joined SAS	2003 (year of establishment)

MEMBERSHIP IN PROFESSIONAL SOCIETIES

Registered Professional Scientist at South African Council for Natural Scientific Professions (SACNASP)

Accredited River Health practitioner by the South African River Health Program (RHP)

Member of the South African Soil Surveyors Association (SASSO)

Member of the Gauteng Wetland Forum

EDUCATION

Qualifications

MSc (Environmental Management) (University of Johannesburg)									
BSc (Hons) Zoology (Aquatic Ecology) (University of Johannesburg)									
BSc (Zool Johannesbu	ogy, Jrg)	Geography	and	Environmental	Management)	(University	of	1999	

COUNTRIES OF WORK EXPERIENCE

South Africa – All Provinces Southern Africa – Lesotho, Botswana, Mozambique, Zimbabwe Eastern Africa – Tanzania West Africa – Ghana, Liberia, Angola, Guinea Bissau Central Africa – Democratic Republic of the Congo

SELECTED PROJECT EXAMPLES

Development compliance studies

- Project co-leader for the development of the EMP for the use of the Wanderers stadium for the Ubuntu village for the World Summit on Sustainable Development (WSSD).
- Environmental Control Officer for Eskom for the construction of an 86Km 400KV power line in the Rustenburg Region.
- Numerous Environmental Impact Assessment (EIA) and EIA exemption applications for township developments and as part of the Development Facilitation Act requirements.
- EIA for the extension of mining rights for a Platinum mine in the Rustenburg area by Lonmin Platinum.
- EIA Exemption application for a proposed biodiesel refinery in Chamdor.
- Compilation of an EIA as part of the Bankable Feasibility Study process for proposed mining of a gold deposit in the Lofa province, Liberia.
- EIA for the development of a Chrome Recovery Plant at the Two Rivers Platinum Mine in the Limpopo province, South Africa.
- Compilation of an EIA as part of the Bankable Feasibility Study process for the Mooihoek Chrome Mine in the Limpopo province, South Africa.
- Mine Closure Plan for the Vlakfontein Nickel Mine in the North West Province.

Specialist studies and project management

- Development of a zero discharge strategy and associated risk, gap and cost benefit analyses for the Lonmin Platinum group.
- Development of a computerised water balance monitoring and management tool for the management of Lonmin Platinum process and purchased water.
- The compilation of the annual water monitoring and management program for the Lonmin Platinum group of mines.
- Analyses of ground water for potable use on a small diamond mine in the North West Province.
- Project management and overview of various soil and land capability studies for residential, industrial and mining developments.
- The design of a stream diversion of a tributary of the Olifants River for a proposed opencast coal mine.
- Waste rock dump design for a gold mine in the North West province.
- Numerous wetland delineation and function studies in the North West, Gauteng and Mpumalanga Kwa-Zulu Natal provinces, South Africa.
- Hartebeespoort Dam Littoral and Shoreline PES and rehabilitation plan.
- Development of rehabilitation principles and guidelines for the Crocodile West Marico Catchment, DWAF North West.

Aquatic and water quality monitoring and compliance reporting

- Development of the Resource quality Objective framework for Water Use licensing in the Crocodile West Marico Water management Area.
- Development of the Resource Quality Objectives for the Local Authorities in the Upper Crocodile West Marico Water management Area.
- Development of the 2010 State of the Rivers Report for the City of Johannesburg.
- Development of an annual report detailing the results of the Lonmin Platinum groups water monitoring program.
- Development of an annual report detailing the results of the Everest Platinum Mine water monitoring program.
- Initiation and management of a physical, chemical and biological monitoring program, President Steyn Gold Mine Welkom.
- Aquatic biomonitoring programs for several Xstrata Alloys Mines and Smelters.
- Aquatic biomonitoring programs for several Anglo Platinum Mines.
- Aquatic biomonitoring programs for African Rainbow Minerals Mines.
- Aquatic biomonitoring programs for several Assmang Chrome Operations.
- Aquatic biomonitoring programs for Petra Diamonds.
- Aquatic biomonitoring programs for several coal mining operations.
- Aquatic biomonitoring programs for several Gold mining operations.
- Aquatic biomonitoring programs for several mining operations for various minerals including iron ore, and small platinum and chrome mining operations.
- Aquatic biomonitoring program for the Valpre bottled water plant (Coca Cola South Africa).
- Aquatic biomonitoring program for industrial clients in the paper production and energy generation industries.
- Aquatic biomonitoring programs for the City of Tshwane for all their Waste Water Treatment Works.

- Baseline aquatic ecological assessments for numerous mining developments.
- Baseline aquatic ecological assessments for numerous residential commercial and industrial developments.
- Baseline aquatic ecological assessments in southern, central and west Africa.
- Lalini Dam assessment with focus on aquatic fish community analysis.
- Musami Dam assessment with focus on the FRAI and MIRAI aquatic community assessment indices.

Wetland delineation and wetland function assessment

- Wetland biodiversity studies for three copper mines on the copper belt in the Democratic Republic of the Congo.
- Wetland biodiversity studies for proposed mining projects in Guinea Bissau, Liberia and Angola in West Africa.
- Terrestrial and wetland biodiversity studies for developments in the mining industry.
- Terrestrial and wetland biodiversity studies for developments in the residential commercial and industrial sectors.
- Development of wetland riparian resource protection measures for the Hartbeespoort Dam as part of the Harties Metsi A Me integrated biological remediation program.
- Priority wetland mammal species studies for numerous residential, commercial, industrial and mining developments throughout South Africa.

Terrestrial ecological studies and biodiversity studies

- Development of a biodiversity offset plan for Xstrata Alloys Rustenburg Operations.
- Biodiversity Action plans for numerous mining operations of Anglo Platinum throughout South Africa in line with the NEMBA requirements.
- Biodiversity Action plans for numerous mining operations of Assmang Chrome throughout South Africa in line with the NEMBA requirements.
- Biodiversity Action plans for numerous mining operations of Xstrata Alloys and Mining throughout South Africa in line with the NEMBA requirements.
- Biodiversity Action plan for the Nkomati Nickel and Chrome Mine Joint Venture.
- Terrestrial and wetland biodiversity studies for three copper mines on the copperbelt in the Democratic Republic of the Congo.
- Terrestrial and wetland biodiversity studies for proposed mining projects in Guinea Bissau, Liberia and Angola in West Africa.
- Numerous terrestrial ecological assessments for proposed platinum and coal mining projects.
- Numerous terrestrial ecological assessments for proposed residential and commercial property developments throughout most of South Africa.
- Specialist Giant bullfrog (*Pyxicephalus adspersus*) studies for several proposed residential and commercial development projects in Gauteng, South Africa.
- Specialist Marsh sylph (*Metisella meninx*) studies for several proposed residential and commercial development projects in Gauteng, South Africa.
- Project management of several Red Data Listed (RDL) bird studies with special mention of African grass owl (*Tyto capensis*).
- Project management of several studies for RDL Scorpions, spiders and beetles for proposed residential and commercial development projects in Gauteng, South Africa.
- Specialist assessments of terrestrial ecosystems for the potential occurrence of RDL spiders and owls.
- Project management and site specific assessment on numerous terrestrial ecological surveys including numerous studies in the Johannesburg-Pretoria area, Witbank area, and the Vredefort dome complex.
- Biodiversity assessments of estuarine areas in the Kwa-Zulu Natal and Eastern Cape provinces.

• Impact assessment of a spill event on a commercial maize farm including soil impact assessments.

Fisheries management studies

- Tamryn Manor (Pty.) Ltd. still water fishery initiation, enhancement and management.
- Verlorenkloof Estate fishery management strategising, fishery enhancement, financial planning and stocking strategy.
- Mooifontein fishery management strategising, fishery enhancement and stocking programs.
- Wickams retreat management strategising.
- Gregg Brackenridge management strategising and stream recalibration design and stocking strategy.
- Eljira Farm baseline fishery study compared against DWAF 1996 aquaculture and aquatic ecosystem guidelines.

SCIENTIFIC AQUATIC SERVICES (SAS) – SPECIALIST CONSULTANT INFORMATION CURRICULUM VITAE OF DIONNE CRAFFORD

PERSONAL DETAILS

Position in Company	Managing member, Ecologist, Aquatic Ecologist
Date of Birth	17 October 1975
Nationality	South African
Languages	English, Afrikaans
Joined SAS	2003 (year of establishment)

MEMBERSHIP IN PROFESSIONAL SOCIETIES

Registered Professional Scientist at South African Council for Natural Scientific Professions (SACNASP)

EDUCATION

Qualifications	5
----------------	---

COUNTRIES OF WORK EXPERIENCE

South Africa – All Provinces

Southern Africa – Caprivi Strip (fish collections)

SELECTED PROJECT EXAMPLES

Aquatic and water quality monitoring and compliance reporting

- Aquatic biomonitoring programs for several Xstrata Alloys Mines and Smelters.
- Aquatic biomonitoring programs for several Anglo Platinum Mines.
- Aquatic biomonitoring programs for African Rainbow Minerals Mines.
- Aquatic biomonitoring programs for several Assmang Chrome Operations.
- Aquatic biomonitoring programs for Petra Diamonds.
- Aquatic biomonitoring programs for several coal mining operations.
- Aquatic biomonitoring programs for several Gold mining operations.
- Aquatic biomonitoring programs for several mining operations for various minerals including iron ore, and small platinum and chrome mining operations.
- Aquatic biomonitoring programs for the City of Tshwane for all their Waste Water Treatment Works.
- Baseline aquatic ecological assessments for numerous mining developments.
- Musami Dam assessment with focus on the FRAI and MIRAI aquatic community assessment indices.

