

Air Quality Impact Assessment for the Der Brochen Expansion Project

Project done on behalf of SRK Consulting (South Africa) (Pty) Ltd.

Project Compiled by:

R von Gruenewaldt

Address: 480 Smuts Drive, Halfway Gardens | Postal: P O Box 5260, Halfway House, 1685 Tel: +27 (0)11 805 1940 | Fax: +27 (0)11 805 7010

Report Details

Status	Revision 0.1
Report Title	Air Quality Impact Assessment for the Der Brochen Expansion Project
Report Number	17SRK04
Date	August 2019
Client	SRK Consulting (South Africa) (Pty) Ltd.
Prepared by	Renee von Gruenewaldt, (Pr. Sci. Nat.), MSc (University of Pretoria)
Notice	Airshed Planning Professionals (Pty) Ltd is a consulting company located in Midrand, South Africa, specialising in all aspects of air quality, ranging from nearby neighbourhood concerns to regional air pollution impacts as well as noise impact assessments. The company originated in 1990 as Environmental Management Services, which amalgamated with its sister company, Matrix Environmental Consultants, in 2003.
Declaration	Airshed is an independent consulting firm with no interest in the project other than to fulfil the contract between the client and the consultant for delivery of specialised services as stipulated in the terms of reference.
Copyright Warning	Unless otherwise noted, the copyright in all text and other matter (including the manner of presentation) is the exclusive property of Airshed Planning Professionals (Pty) Ltd. It is a criminal offence to reproduce and/or use, without written consent, any matter, technical procedure and/or technique contained in this document.

Revision Record

Revision Number	Date	Reason for Revision
Rev 0	April 2019	For client review
Rev 0.1	August 2019	Incorporation of open pit mining activities

EXECUTIVE SUMMARY

Introduction

Airshed Planning Professionals (Pty) Ltd (Airshed) was commissioned by SRK Consulting (South Africa) (Pty) Ltd (SRK) to undertake a specialist environmental air quality impact study for the Der Brochen expansion project (hereafter referred to as the project).

The aim of the investigation is to quantify the possible impacts resulting from the project activities on the surrounding environment and human health. To achieve this, a good understanding of the local dispersion potential of the site is necessary and subsequently an understanding of existing sources of air pollution in the region and the resulting air quality.

Study Approach and Methodology

The investigation followed the methodology required for a specialist report as prescribed in the Environmental Impact Assessment (EIA) Regulations (Government Gazette 40772 of 7 April 2017).

Baseline Assessment

The baseline study encompassed the analysis of meteorological data. Use was made of the Weather Research and Forecasting mesoscale model (known as WRF) for the period 2015 to 2017.

Impact Assessment Criteria

Particulates represent the main pollutants of concern in the assessment of operations from the proposed project. Particulate matter is classified as a criteria pollutant, with ambient air quality guidelines and standards having been established by various countries to regulate ambient concentrations of these pollutants. For the current study, the impacts were assessed against published National Ambient Air Quality Standards (NAAQS) and National Dust Control Regulations (NDCR).

Emissions Inventory

Emissions inventories provide the source input required for the simulation of ambient air concentrations. Source emissions from vents, materials handling, conveyor, vehicle entrainment from temporary haul road and wind erosion from tailings storage facilities (TSFs) were quantified.

Impact Prediction Study

Particulate concentrations and dustfall rates due to the proposed operations were simulated using the United States Environmental Protection Agency (US-EPA) approved AERMET/AERMOD dispersion modelling suite. Ambient concentrations were simulated to ascertain highest daily and annual averaging levels occurring as a result of the project operations.

Assumptions, Exclusions and Limitations

The main assumptions, exclusions and limitations are summarised below:

- Meteorological data: As no onsite meteorological data was available, use was made of the Weather Research and Forecasting mesoscale model (known as WRF) for the period 2015 to 2017.
- Emissions:
 - The quantification of sources of emission was restricted to the project activities only. Although other background sources were identified in the study area, such sources were not quantified as this did not form part of the scope of this assessment.
 - Information required for the calculation of emissions from fugitive dust sources for the proposed project operations was provided by the client. The assumption was made that this information was accurate and correct.
 - Routine emissions from the proposed operations were estimated and modelled. Atmospheric releases occurring as a result of non-routine operations or accidents were not accounted for.
- Impact assessment:
 - o The simulated impacts are screened against NAAQS and NDCR and is not a health risk assessment.
 - The impact assessment is confined to the quantification of impacts on human health due to exposures via the inhalation pathway only and not through the ingestion and dermal absorption pathways for humans and animals.
 - The construction and closure phases were assessed qualitatively due to the temporary nature of these operations, whilst the operational phase was assessed quantitatively.

Findings

The main findings from the baseline assessment were as follows:

- The flow field is dominated by winds from the south-easterly sectors. During day-time conditions, winds from the north increase in frequency, with winds from the south-easterly sector increasing at night.
- The closest residential developments to the proposed project consist of Ga-Masha (~10 km northwest). Individual farmsteads also surround the Der Brochen mine area.
- Measured dust fallout at Der Brochen is below the NDCR for non-residential areas (1 200 mg/m²/day) and residential areas (600 mg/m²/day) for the period April 2017 to November 2018.

The main findings from the impact assessment due to project operations were as follows:

- Windblown dust from the TSFs, vehicle entrainment from the temporary haul road and conveyor activities represented the highest impacting particulate sources from the proposed project operations.
- The highest PM_{2.5} and PM₁₀ concentrations due to proposed project operations (unmitigated) were in compliance with NAAQS at the closest sensitive receptors for all scenarios. When activities were mitigated (assuming 75%)

Air Quality Impact Assessment for the Der Brochen Expansion Project

control efficiency on vehicle entrainment for the temporary haul road and 65% control efficiency on the conveyor) the PM_{2.5} and PM₁₀ concentrations reduced notably in magnitude and spatial distribution.

 Maximum daily dust deposition was within with the NDCR for residential areas at the closest sensitive receptors for all modelled scenarios.

Recommendations

It is of the authors opinion that the project be authorised provided that the following recommendations are followed:

- It is recommended that dust fallout sampling, as per the current dust fallout network, continue in order to monitor the impacts from the proposed project activities.
- Due to the close proximity of sensitive receptors to the proposed project activities and the potential for cumulative impacts due to surrounding mining activities, it is recommended that mitigation measures on the main sources of fugitive dust be implemented to minimise impacts as far as possible.

TABLE OF CONTENTS

1	INTRODU	ICTION	1
1.1	Purpose/ Objectives		
1.2	Terms of	Reference/Scope of Work	1
1.3	Deliverab	les	3
1.4	Specialist	Details	3
	1.4.1	Statement of Independence	3
	1.4.2	Competency Profiles	3
1.5	Approach	and Methodology	4
	1.5.1	Potential Air Emissions from the Proposed Project	4
	1.5.2	Regulatory Requirements and Assessment Criteria	4
	1.5.3	Description of the Baseline Environment	4
	1.5.4	Emissions Inventory	4
	1.5.5	Atmospheric Dispersion Modelling	5
	1.5.6	Management and Mitigation	5
1.6	Assumpti	ons and Limitations	5
1.7	Outline of Report		
2	REGULA	TORY REQUIREMENTS AND ASSESSMENT CRITERIA	7
2.1	National Ambient Air Quality Standards 7		
2.2	National Regulations for Dust Deposition 8		
2.3	Effect of Dust on Vegetation, Animals and Susceptible Human Receptors		

	2.3.1	Effects of Particular Matter on Vegetation	8
	2.3.2	Effects of Particulate Matter on Animals	10
	2.3.3	Effect of Particulate Matter on Susceptible Human Receptors	11
2.4	Regulatio	ns regarding Air Dispersion Modelling	13
2.5	Regulatio	ns Regarding Report Writing	14
3	RECEIVIN	NG ENVIRONMENT	16
3.1	Air Quality	y Sensitive Receptors	16
3.2	Terrain		16
3.3	Climate a	nd Atmospheric Dispersion Potential	17
	3.3.1	Local Wind Field	17
	3.3.2	Ambient Temperature	18
	3.3.3	Atmospheric Stability and Mixing Depth	19
3.4	Ambient A	Air Quality within the Region	20
3.5	Existing S	Sources of Emissions near the Project	23
	3.5.1	Materials handling	23
	3.5.2	Household Fuel Burning	23
	3.5.3	Biomass Burning	23
	3.5.4	Vehicle Exhaust Emissions	24
	3.5.5	Fugitive Dust Emissions from Open Cast Mining	24
	3.5.6	Other Fugitive Dust Sources	24
4	IMPACTS	FROM THE PROPOSED PROJECT ON THE RECEIVING ENVIRONMENT	25

4.1	Planning/Design and Construction Phase		25
	4.1.1	Identification of Environmental Aspects	25
	4.1.2	Mitigation Measures Recommended	25
4.2	Operatior	nal Phase	26
	4.2.1	Identification of Environmental Aspects	26
	4.2.2	Quantification of Environmental Aspects and Impact Classification	27
	4.2.3	Mitigation Measures Recommended	47
4.3	Decommi	ssioning and Closure Phase	49
	4.3.1	Identification of Environmental Aspects	49
	4.3.2	Mitigation Measures Recommended	50
5	SIGNIFIC	ANCE RANKING	51
6	DUST MA	NAGEMENT PLAN	56
6.1	Site Spec	ific Management Objectives	56
	6.1.1	Ranking of Sources by Emissions	56
	6.1.2	Ranking of Sources by Impact	56
6.2	Project-S	pecific Management Measures	57
	6.2.1	Estimation of Dust Control Efficiencies	57
	6.2.2	Identification of Suitable Pollution Abatement Measures	57
	6.2.3	Performance Indicators	57
	6.2.4	Record-keeping, Environmental Reporting and Community Liaison	60
6.3	Summary	of Dust Management Plan	60

7	FINDINGS AND RECOMMENDATIONS	63
7.1	Findings	63
7.2	Recommendations	63
8	REFERENCES	64
APP	ENDIX A - COMPREHENSIVE CURRICULUM VITAE OF THE AUTHOUR OF THE CURRENT ASSESSMENT	67
APP	ENDIX B - DECLARATION OF INDEPENDENCE	73
APP	ENDIX C – ENVIRONMENTAL IMPACT ASSESSMENT SIGNIFICANCE RATING METHODOLOGY	74

LIST OF TABLES

Table 2-1: South African National Ambient Air Quality Standards	7
Table 2-2: Acceptable dustfall rates	8
Table 2-3: Specialist report requirements in terms of Appendix 6 of the EIA Regulations (2014), as amended	14
Table 3-1: Monthly temperature summary (WRF data, 2015 to 2017)	19
Table 3-2: Location of the single dust fallout buckets for Der Brochen	20
Table 3-3: Measured dust fallout at Der Brochen for the period April 2017 to November 2018	21
Table 4-1: Typical sources of fugitive particulate emission associated with construction	25
Table 4-2: Dust control measures that may be implemented during construction activities	26
Table 4-3: Potential air pollutants emitted from the proposed project	26
Table 4-4: Emission factors used to qualify the routine emissions from the operational phase for the project	27
Table 4-5: Particle size distribution (provided as a fraction) for the storage pile material	29
Table 4-6: Particulate emissions due to routine operations for the project	
Table 4-7: Isopleth plots presented in the current section	31
Table 4-8: Activities and aspects identified for the decommissioning phase	49
Table 5-1: Significance ranking due to proposed project activities	52
Table 6-1: Ambient air monitoring, performance assessment and reporting programme	58
Table 6-2: Air Quality Management Plan for the proposed project operations	61

LIST OF FIGURES

Figure 1-1: Proposed layout	2
Figure 3-1: Terrain elevation over the study area	16
Figure 3-2: Period, day-, and night-time wind roses (WRF data, 2015 to 2017)	18
Figure 3-3: Diurnal temperature profile (WRF data, 2015 to 2017)	19
Figure 3-4: Average diurnal atmospheric stability as calculated by Aermet from WRF data for the period 2015 – 2017	20
Figure 3-5: Location of the dust fallout network for Der Brochen	21
Figure 3-6: Measured dust fallout at Der Brochen for the period April 2017 to November 2018	22
Figure 4-1: Area of non-compliance of PM ₁₀ NAAQS due to baseline operations	32
Figure 4-2: Area of non-compliance of PM ₁₀ NAAQS due to unmitigated project operations (assuming the temporary trans of ROM via trucks)	sport 33
Figure 4-3: Area of non-compliance of PM ₁₀ NAAQS due to mitigated project operations (assuming the temporary transpo ROM via trucks – with 75% control efficiency on unpaved roads)	ort of 34
Figure 4-4: Area of non-compliance of PM ₁₀ NAAQS due to unmitigated project operations (assuming the transport of R via conveyor)	OM 35
Figure 4-5: Area of non-compliance of PM ₁₀ NAAQS due to mitigated project operations (assuming the transport of ROM conveyor – with 65% control efficiency on the conveyor)	1 via 36
Figure 4-6: Area of non-compliance of PM2.5 NAAQS due to baseline operations	37
Figure 4-7: Area of non-compliance of PM _{2.5} NAAQS due to unmitigated project operations (assuming the temporary trans of ROM via trucks)	sport 38
Figure 4-8: Area of non-compliance of PM _{2.5} NAAQS due to mitigated project operations (assuming the temporary transpo ROM via trucks – with 75% control efficiency on unpaved roads)	ort of 39
Figure 4-9: Area of non-compliance of PM _{2.5} NAAQS due to unmitigated project operations (assuming the transport of R via conveyor)	OM 40
Figure 4-10: Area of non-compliance of PM _{2.5} NAAQS due to mitigated project operations (assuming the transport of ROM conveyor – with 65% control efficiency on the conveyor)	/l via 41

Figure 4-11: Total particulate deposition due to baseline operations

- Figure 4-12: Total particulate deposition due to unmitigated project operations (assuming the temporary transport of ROM via trucks) 43
- Figure 4-13: Total particulate deposition due to mitigated project operations (assuming the temporary transport of ROM via trucks with 75% control efficiency on unpaved roads) 44

Figure 4-14: Total particulate deposition due to unmitigated project operations (assuming the transport of ROM via conveyor) 45

Figure 4-15: Total particulate deposition due to mitigated project operations (assuming the transport of ROM via conveyor – with 65% control efficiency on the conveyor) 46

42

LIST OF ACRONYMS AND SYMBOLS

AAP	Anglo American Platinum		
Airshed	Airshed Planning Professionals (Pty) Ltd		
APCS	Air Pollution Control System		
AQA	Air Quality Act		
°C	Degrees Celsius		
CE	Control efficiency		
CO	Carbon monoxide		
CO ₂	Carbon dioxide		
CEPA	Canadian Environmental Protection Agency		
DEA	Department of Environmental Affairs		
EIA	Environmental Impact Assessment		
HC	Hvdro carbons		
I&AP	Interested and affected parties		
km	Kilometre		
LMo	Monin-Obukhov length		
m³	Cubic metre		
m²	Square metre		
NAAQS	National Ambient Air Quality Standards		
NACA	National Association for Clean Air		
NDCR	National Dust Control Regulations		
NEMA	National Environmental Management Act		
NOAL	No adverse effect levels		
NO ₂	Nitrogen dioxide		
NOx	Oxides of nitrogen		
O ₃	Ozone		
Pb	Lead		
PM	Particulate matter		
PM10	Particulate Matter with an aerodynamic diameter of less than 10µm		
PM _{2.5}	Particulate Matter with an aerodynamic diameter of less than 2.5um		
QA	Quality assessment		
QC	Quality control		
ROM	Run of Mine		
RPM	Rustenburg Platinum Mines Limited		
SA	South Africa		
SACNASP	South African Council for Natural Scientific Professions		
SANS	South African National Standards		
SO ₂	Sulfur Dioxide		
SRK	SRK Consulting (South Africa) (Ptv) Ltd		
SRTM	Shuttle Radar Topography Mission		
TSF	Tailings Storage Facility		
TSP	Total Suspended Particles		
US EPA	United States Environmental Protection Agency		
USGS	United States Geological Survey		
WRF	Weather Research and Forecasting mesoscale model		
	J		

Note:

The spelling of "sulfur" has been standardised to the American spelling throughout the report. The International Union of Pure and Applied Chemistry, the international professional organisation of chemists that operates under the umbrella of UNESCO, in 1990 published a list of standard names for all chemical elements. It was decided that element 16 should be spelled "sulfur". This compromise was to ensure that in future searchable data bases would not be complicated by spelling variants. (IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson.

Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8.doi: 10.1351/goldbook)"

Air Quality Impact Assessment for the Der Brochen Expansion Project

1 INTRODUCTION

1.1 Purpose/ Objectives

The Der Brochen Mine is a platinum project owned by Rustenburg Platinum Mines Limited (RPM), a wholly owned subsidiary of Anglo American Platinum (AAP), and is located approximately 25 km south-west of the town of Steelpoort and 40 km west of Mashishing (Lydenburg), in the Limpopo Province. The project area falls within the Greater Tubatse Local Municipality, under jurisdiction of the Greater Sekhukhune District Municipality. RPM is considering expanding the Der Brochen Mine project to include opencast and underground mining activities (hereafter referred to as the project).

Airshed Planning Professionals (Pty) Ltd (Airshed) was commissioned by SRK Consulting (South Africa) (Pty) Ltd (SRK) to undertake a specialist environmental air quality impact study for the project. The layout of the project site is provided in Figure 1-1.

The main objective of this study is to determine the significance of the predicted impacts from the project operations on the surrounding environment and on human health.

1.2 Terms of Reference/Scope of Work

The terms of reference for the assessment are as follows:

1. Baseline

•

- Identification of existing air pollution sources;
- Identification of air quality-sensitive receptors, including any nearby residential dwellings in the vicinity of the project;
- Collection of local weather conditions from the closest meteorological monitoring station or calculated data;
 - Preparation of three years of raw meteorological data. The required meteorological data includes hourly average wind speed, wind direction and temperature data.
 - Simulation of wind field, mixing depth and atmospheric stability.
- The legislative and regulatory context, including ambient air quality standards.
- Assessment of baseline air pollutant measurements (from available information).

2. Impact Assessment

- Quantification of all sources of atmospheric emissions associated with the project.
- Formatting of meteorological data for input to the dispersion.
- Dispersion simulations of ground level pollutants, due to routine emissions from the project, reflecting highest daily and annual average concentrations. The United States Environmental Protection Agency (US-EPA) approved AERMOD model to be used.
- Analysis of dispersion modelling results.
- Evaluation of potential for human health and environmental impacts.

3. Air Quality Management Plan

• Recommended mitigation measures and monitoring program for the site.

Figure 1-1: Proposed layout

1.3 Deliverables

At the core of the study is the provision of a mathematical tool (i.e. the dispersion model) that credibly describes the fluxes and dispersion of air emissions from the project through the incorporation of meteorological and emission configuration complexities.

The final deliverables are ground level particulate air concentration and total dust deposition predictions provided as isopleths superimposed on base maps of the study area.

1.4 Specialist Details

1.4.1 Statement of Independence

Airshed is an independent consulting firm with no interest in the project other than to fulfil the contract between the client and the consultant for delivery of specialised services as stipulated in the terms of reference.

1.4.2 Competency Profiles

1.4.2.1 RG von Gruenewaldt (MSc (Meteorology), BSc, Pr. Sci Nat.)

Reneé von Gruenewaldt is a Registered Professional Natural Scientist (Registration Number 400304/07) with the South African Council for Natural Scientific Professions (SACNASP) and a member of the National Association for Clean Air (NACA).

Following the completion of her bachelor's degree in atmospheric sciences in 2000 and honours degree (with distinction) with specialisation in Environmental Analysis and Management in 2001 at the University of Pretoria, her experience in air pollution started when she joined Environmental Management Services (now Airshed Planning Professionals) in 2002. Reneé von Gruenewaldt later completed her master's degree (with distinction) in Meteorology at the University of Pretoria in 2009.

Reneé von Gruenewaldt became partner of Airshed Planning Professionals in September 2006. Airshed Planning Professionals is a technical and scientific consultancy providing scientific, engineering and strategic air pollution impact assessment and management services and policy support to assist clients in addressing a wide variety of air pollution related risks and air quality management challenges.

She has extensive experience on the various components of air quality management including emissions quantification for a range of source types, simulations using a range of dispersion models, impacts assessment and health risk screening assessments. Reneé has been the principal air quality specialist and manager on several Air Quality Impact Assessment projects between 2006 to present and her project experience range over various countries in Africa, providing her with an inclusive knowledge base of international legislation and requirements pertaining to air quality.

A comprehensive curriculum vitae of Reneé von Gruenewaldt is provided in Appendix A.

The declaration of independence for Reneé von Gruenewaldt is provided in Appendix B.

1.5 Approach and Methodology

The methodology followed in the assessment to quantify the air quality impacts associated with the proposed project is discussed below. The general tasks included:

- The establishment of the baseline air quality (based on available information);
- Quantification of air emissions from the project;
- Obtaining and discussing meteorological parameters required to establish the atmospheric dispersion potential;
- Simulation of the ambient air concentrations for the pollutants of concern and dust fallout using a suitable atmospheric dispersion model;
- Assessment of the significance of the impact through the comparison of simulated air concentrations (and fallout rates) with local standards (for legal compliance;
- Recommendations for mitigation and monitoring.

1.5.1 Potential Air Emissions from the Proposed Project

The air pollution associated with the proposed project activities includes the air emissions emitted from a vent, conveyor operations, materials handling and wind erosion.

1.5.2 Regulatory Requirements and Assessment Criteria

In the evaluation of air emissions and ambient air quality impacts reference is made to National Ambient Air Quality Standards (NAAQS). These standards generally apply only to a number of common air pollutants, collectively known as criteria pollutants. Criteria pollutants include sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), inhalable particulate matter (including thoracic particulate matter with an aerodynamic diameter of equal to or less than 10 µm or PM₁₀ and inhalable particulate matter with an aerodynamic diameter equal to or less than 2.5 µm or PM_{2.5}), benzene, ozone and lead.

Particulates represent the main pollutants of concern in the assessment of operations from the project. For the current assessment, the impacts were assessed against published NAAQS and Dust Control Regulations (NDCR).

1.5.3 Description of the Baseline Environment

An understanding of the atmospheric dispersion potential of the area is essential to an air quality impact assessment. Meteorological information was sourced from WRF modelled data for the period 2015 to 2017.

1.5.4 *Emissions Inventory*

The establishment of a comprehensive emission inventory formed the basis for the assessment of the air quality impacts from proposed operations. Proposed project operations result in fugitive emissions. Fugitive emissions refer to emissions that are spatially distributed over a wide area and not confined to a specific discharge point as would be the case for process related emissions (IFC, 2007).

In the quantification of fugitive dust, use was made of emission factors which link the quantity of a pollutant to the activity associated with the release of that pollutant.

1.5.5 Atmospheric Dispersion Modelling

In the calculation of ambient air pollutant concentrations and dustfall rates use was made of the US EPA AERMOD atmospheric dispersion modelling suite. AERMOD is a Gaussian plume model best used for near-field applications where the steady-state meteorology assumption is most likely to apply. AERMOD is a model developed with the support of the AMS/EPA Regulatory Model Improvement Committee (AERMIC), whose objective has been to include state-of the-art science in regulatory models (Hanna, Egan, Purdum, & Wagler, 1999). AERMOD is a dispersion modelling system with three components, namely: AERMOD (AERMIC Dispersion Model), AERMAP (AERMOD terrain pre-processor), and AERMET (AERMOD meteorological pre-processor).

The dispersion of PM₁₀, PM_{2.5}, metals and total suspended particulates (TSP) was modelled for an area covering 17.7 km (north-south) by 14.6 km (east-west). These areas were divided into a grid with a resolution of 100 m (north-south) by 100 m (east-west) for the modelling of concentrations and deposition. AERMOD simulates ground-level concentrations for each of the receptor grid points. AERMOD version 18081 was used for the assessment.

1.5.6 Management and Mitigation

The findings of the above components informed recommendations for air quality management measures, including mitigation and monitoring.

1.6 Assumptions and Limitations

The main assumptions, exclusions and limitations are summarised below:

- Meteorological data: As no onsite meteorological data was available, use was made of the Weather Research and Forecasting mesoscale model (known as WRF) for the period 2015 to 2017.
- Emissions:
 - The quantification of sources of emission was restricted to the project activities only. Although other background sources were identified in the study area, such sources were not quantified as this did not form part of the scope of this assessment.
 - Information required for the calculation of emissions from fugitive dust sources for the proposed project operations was provided by the client. The assumption was made that this information was accurate and correct.
 - Routine emissions from the proposed operations were estimated and modelled. Atmospheric releases
 occurring as a result of non-routine operations or accidents were not accounted for.
- Impact assessment:
 - o The simulated impacts are screened against NAAQS and NDCR and is not a health risk assessment.
 - The impact assessment is confined to the quantification of impacts on human health due to exposures via the inhalation pathway only and not through the ingestion and dermal absorption pathways for humans and animals.
 - The construction and closure phases were assessed qualitatively due to the temporary nature of these operations, whilst the operational phase was assessed quantitatively.

1.7 Outline of Report

Assessment criteria applicable to the proposed project are presented in Section 2. The study area, atmospheric dispersion potential and the existing air quality for the area are discussed in Section 3. Dispersion model results are presented, and the main findings of the air quality impact assessments documented in Section 4. The significance ranking for the proposed project is provided in Section 5. A dust management plan is provided in Section 6 and findings and recommendations provided in Section 7.

2 REGULATORY REQUIREMENTS AND ASSESSMENT CRITERIA

The environmental regulations and guidelines governing the emissions and impact of the project need to be considered prior to potential impacts and sensitive receptors being identified.

Air quality guidelines and standards are fundamental to effective air quality management, providing the link between the source of atmospheric emissions and the user of that air at the downstream receptor site. The ambient air quality standards are intended to indicate safe daily exposure levels for the majority of the population, including the very young and the elderly, throughout an individual's lifetime. Air quality guidelines and standards are normally given for specific averaging periods. These averaging periods refer to the time-span over which the air concentration of the pollutant was monitored at a location. Generally, five averaging periods are applicable, namely an instantaneous peak, 1-hour average, 24-hour average, 1-month average, and annual average.

2.1 National Ambient Air Quality Standards

NAAQS are available for PM_{2.5} (gazetted on 29 June 2012 (Government Gazette no. 35463)) as well as, PM₁₀, SO₂, NO₂ ozone (O₃), CO, lead (Pb) and benzene gazetted on 24 December 2009 (Government Gazette 32816). The NAAQS are provided in Table 2-1 with the pollutants of concern for the project provided in bold text.

Substance	Molecular formula / notation	Averaging period	Concentration limit (µg/m³)	Frequency of exceedance	Compliance date
		10 minutes	500	526	Immediate
Sulfur diavida	<u>so</u> .	1 hour	350	88	Immediate
Sullur dioxide	302	24 hours	125	4	Immediate
		1 year	50	0	Immediate
Nitrogen	NO	1 hour	200	88	Immediate
dioxide	NU2	1 year	40	0	Immediate
Particulate	PM10	24 hour	75	4	Immediate
matter		1 year	40	0	Immediate
	PM _{2.5}	24 hour	40	4	Immediate
Fine			25	4	1 Jan 2030
matter		1.voor	20	0	Immediate
		i year	15	0	1 Jan 2030
Ozone	O3	8 hours (running)	120	11	Immediate
Benzene	C_6H_6	1 year	5	0	1 Jan 2015
Lead	Pb	1 year	0.5	0	Immediate
		1 hour	30 000	88	Immediate
Carbon monoxide	со	8 hour (calculated on 1 hour averages)	10 000	11	Immediate

Table 2-1: South African National Ambient Air Quality Standards

2.2 National Regulations for Dust Deposition

South Africa's Draft National Dust Control Regulations were published on the 27 May 2011 with the dust fallout standards passed and subsequently published on the 1st of November 2013 (Government Gazette No. 36974). These are called the NDCR. The purpose of the regulations is to prescribe general measures for the control of dust in all areas including residential and light commercial areas. South African (SA) NDCRs that were published on the 1st of November 2013. Acceptable dustfall rates according to the regulation are summarised in Table 2-2. These regulations are only applicable to a facility (including mining) that has been identified as a potential source of nuisance dust by a local air quality officer.

Table 2-2: Acceptable dustfall rates

Restriction Area	Dustfall rate (D) (mg m ⁻² day ⁻¹ , 30-day average)	Permitted frequency of exceeding dust fall rate	
Residential	D < 600	Two within a year, not sequential months.	
Non-residential	600 < D < 1 200	Two within a year, not sequential months	

The regulation also specifies that the method to be used for measuring dustfall and the guideline for locating sampling points shall be ASTM D1739 (1970), or equivalent method approved by any internationally recognized body. It is important to note that dustfall is assessed for nuisance impact and not inhalation health impact.

A revised Draft National Dust Control Regulations were published on 25 March 2018 (Government Gazette No. 41650) which references the same acceptable dustfall rates but refers to the latest version of the ASTM D1739 method to be used for sampling.

2.3 Effect of Dust on Vegetation, Animals and Susceptible Human Receptors

2.3.1 Effects of Particular Matter on Vegetation

Since plants are constantly exposed to air, they are the primary receptors for both gaseous and particulate pollutants of the atmosphere. In terrestrial plant species, the enormous foliar surface area acts as a natural sink for pollutants especially the particulate ones. Vegetation is an effective indicator of the overall impact of air pollution particularly in context of particulate matter (PM) (Rai, 2016).

There are two main types of direct injury that PM pollution can cause on plants: acute and chronic injury. Acute injury results from exposure to a high concentration of gas for a relatively short period and is manifested by clear visible symptoms on the foliage, often in the form of necrotic lesions. While this type of injury is very easy to detect (although not necessarily to diagnose), chronic injury is subtler: it results from prolonged exposure to lower gas concentrations and takes the form of growth and/or yield reductions, often with no clear visible symptoms. Plants that are constantly exposed to environmental pollutants absorb, accumulate and integrate these pollutants into their systems. It reported that depending on their sensitivity level, plants show visible changes which would include alteration in the biochemical processes or accumulation of certain metabolites (Rai, 2016). Pollutants can cause leaf injury, stomatal damage (Ricks and Williams, 1974, Hirano et al., 1995; Naidoo and Chirkoot; 2004; Harmens et al., 2005), premature senescence, decrease photosynthetic activity, disturb membrane permeability (Ernst, 1981; Naidoo and Chirkoot, 2004; Harmens et al., 2005) and reduce growth and yield in sensitive plant species. The long term, low-concentration exposures of air pollution produces harmful impacts on plant leaves

without visible injury. Several studies have been conducted to assess the effects of pollution on different aspects of plant life such as overall growth and development, foliar morphology, anatomy, and bio chemical changes (Rai, 2016).

Plant leaves are the primary receptors for both gaseous and PM pollutants of the atmosphere. Before these pollutants enter the leaf tissue, they interact with foliar surface and modify its configuration. Dust deposition on leaf surface, consisting of ultra-fine and coarse particles, showed reduction in plant growth through its effect on leaf gas exchange, flowering and reproduction of plants, number of leaves and leaf area, one of the most common driving variables in growth analyses. Reduction in leaf area and leaf number may be due to decreased leaf production rate and enhanced senescence (Rai, 2016).

The chemical composition of the dust particles can also affect exposed plant tissue and have indirect effects on the soil pH (Spencer, 2001).

To determine the impact of dust deposition on vegetation, two factors are of importance: (i) Does dust accumulate on vegetation surfaces and if it does, what are the factors influencing the rate of deposition (ii) Once the dust has been deposited, what is the impact of the dust on the vegetation? Regarding the first question, there is adequate evidence that dust does accumulate on all types of vegetation. Any type of vegetation causes a change in the local wind fields, increasing turbulence and enhancing the collection efficiency. Vegetation structure alters the rate of dust deposition such that the larger the "collecting elements" (branches and leaves), the lower the impaction efficiency per element. Therefore, for the same volume of tree/shrub canopy, finer leaves will have better collection efficiencies. However, the roughness of the leaves themselves, in particularly the presence of hairs on the leaves and stems, plays a significant role, with venous surfaces rapidly with particle size; wind tunnel studies show a relationship of deposition velocity on the fourth power of particle size for moderate wind speeds (Tiwary and Colls, 2010). Wind tunnel studies also show that windbreaks or "shelter belts" of three rows of trees have a decrease of between 35 and 56% of the downwind mass transport of inorganic particles.

After deposition onto vegetation, the effect of particulate matter depends on the composition of the dust. South African ambient standards are set in terms of $PM_{2.5}$ and PM_{10} (particulate matter smaller than 2.5 µm and 10 µm aerodynamic diameter) but internationally it is recognised that there are major differences in the chemical composition of the fine PM (the fraction between 0 and 2.5 µm in aerodynamic diameter) and coarse PM (the fraction between 2.5 µm and 10 µm in aerodynamic diameter). The former is often the result of chemical reactions in the atmosphere and may have a high proportion of black carbon, sulfate and nitrate; whereas the latter often consists of primary particles as a result of abrasion, crushing, soil disturbances and wind erosion (Grantz et al., 2003). Sulfate is however often hygroscopic and may exist in significant fractions in coarse PM. This has been shown at the Elandsfontein Eskom air quality monitoring station where the PM₁₀ has been shown to vary between 15% (winter) and 49% (spring) sulfate (Alade, 2010). Grantz et al. (op. cit.) however indicate that sulfate is much less phototoxic than gaseous sulfur dioxide and that "it is unusual for injurious levels of particular sulfate to be deposited upon vegetation".

According to the Canadian Environmental Protection Agency (CEPA), generally air pollution adversely affects plants in one of two ways. Either the quantity of output or yield is reduced, or the quality of the product is lowered. The former (invisible) injury results from pollutant impacts on plant physiological or biochemical processes and can lead to significant loss of growth or yield in nutritional quality (e.g. protein content). The latter (visible) may take the form of discolouration of the leaf surface caused by internal cellular damage. Such injury can reduce the market value of agricultural crops for which visual appearance is important (e.g. lettuce and spinach). Visible injury tends to be associated with acute exposures at high pollutant concentrations whilst invisible injury is generally a consequence of chronic exposures to moderately elevated

pollutant concentrations. However, given the limited information available, specifically the lack of quantitative dose-effect information, it is not possible to define a reference level for vegetation and particulate matter (CEPA, 1998).

Exposure to a given concentration of airborne PM may therefore lead to widely differing phytotoxic responses, depending on the mix of the deposited particles. The majority of documented toxic effects indicate responses to the chemical composition of the particles. Direct effects have most often been observed around heavily industrialised point sources, but even there, effects are often associated with the chemistry of the particulate rather than with the mass of particulate. A review of European studies has shown the potential for reduced growth and photosynthetic activity in sunflower and cotton plants exposed to dust fall rates greater than 400 mg/m²/day. Little direct evidence of the effects of dust-fall on South African vegetation, including crops, exists.

2.3.2 Effects of Particulate Matter on Animals

As presented by the Canadian Environmental Protection Agency (CEPA, 1998) studies using experimental animals have not provided convincing evidence of particle toxicity at ambient levels. Acute exposures (4-6 hour single exposures) of laboratory animals to a variety of types of particles, almost always at concentrations well above those occurring in the environment have been shown to cause:

- decreases in ventilatory lung function;
- changes in mucociliary clearance of particles from the lower respiratory tract (front line of defence in the conducting airways);
- increased number of alveolar macrophages and polymorphonuclear leukocytes in the alveoli (primary line of defence of the alveolar region against inhaled particles);
- alterations in immunologic responses (particle composition a factor, since particles with known cytotoxic properties, such as metals, affect the immune system to a significantly greater degree);
- changes in airway defence mechanisms against microbial infections (appears to be related to particle composition and not strictly a particle effect);
- increase or decrease in the ability of macrophages to phagocytize particles (also related to particle composition);
- a range of histologic, cellular and biochemical disturbances, including the production of proinflammatory cytokines and other mediators by the lungs alveolar macrophages (may be related to particle size, with greater effects occurring with ultrafine particles);
- increased electrocardiographic abnormalities (an indication of cardiovascular disturbance); and
- increased mortality.

Bronchial hypersensitivity to non-specific stimuli, and increased morbidity and mortality from cardio-respiratory symptoms, are most likely to occur in animals with pre-existing cardio-respiratory diseases. Sub-chronic and chronic exposure tests involved repeated exposures for at least half the lifetime of the test species. Particle mass concentrations to which test animals were exposed were very high (> 1 mg m-³), greatly exceeding levels reported in the ambient environment. Exposure resulted in significant compromises in various lung functions similar to those seen in the acute studies, but including also:

- reductions in lung clearance;
- induction of histopathologic and cytologic changes (regardless of particle types, mass, concentration, duration of exposure or species examined);
- development of chronic alveolitis and fibrosis; and

• development of lung cancer (a particle and/or chemical effect).

The epidemiological finding of an association between 24-hour ambient particle levels below 100 μ g/m³ and mortality has not been substantiated by animal studies as far as PM₁₀ and PM_{2.5} are concerned. At ambient concentrations, none of the other particle types and sizes used in animal inhalation studies result in acute effects, including high mortality, with exception of ultrafine particles (0.1 μ m). The lowest concentration of PM_{2.5} reported that caused acute death in rats with acute pulmonary inflammation or chronic bronchitis was 250 g/m³ (3 days, 6 hour day-1), using continuous exposure to concentrated ambient particles.

Most of the literature regarding air quality impacts on cattle refers to the impacts from feedlots on the surrounding environment, hence where the feedlot is seen as the source of pollution. This mainly pertains to odours and dust generation. The United States Environmental Protection Agency (US EPA) recently focussed on the control of air pollution from feed yards and dairies, primarily regulating coarse particulate matter. However, the link between particulates and public health is considered to be understudied (Sneeringer, 2009).

A study was conducted by the State University of Iowa on the effects of air contaminants and emissions on animal health in swine facilities. Air pollutants included gases, particulates, bioaerosols, and toxic microbial by-products. The main findings were that ammonia is associated with lowered average number of pigs weaned, arthritis, porcine stress syndrome, muscle lesions, abscesses, and liver ascarid scars. Particulates are associated with the reduction in growth and turbine pathology, and bioaerosols could lower feed efficiency, decrease growth, and increase morbidity and mortality. The authors highlighted the general lack of information on the health effects and productivity-problems of air contaminants on cattle and other livestock. Ammonia and hydrogen sulfide are regarded the two most important inorganic gases affecting the respiratory system of cattle raised in confinement facilities, affecting the mucociliary transport and alveolar macrophage functions. Holland et al., (2002) found that the fine inhalable particulate fraction is mainly derived from dried faecal dust.

Inhalation of confinement-house dust and gases produces a complex set of respiratory responses. An individual's response depends on characteristics of the inhaled components (such as composition, particle size and antigenicity) and of the individual's susceptibility, which is tempered by extant respiratory conditions (Davidson et al., 2005). Most studies concurred that the main implication of dusty environments is the stress caused to animals which is detrimental to their general health. However, no threshold levels exist to indicate at what levels these are having a negative effect. In this light it was decided to use the same screening criteria applied to human health, i.e. the South African Standards and SANS limit values.

2.3.3 Effect of Particulate Matter on Susceptible Human Receptors

The impact of particles on human health is largely depended on (i) particle characteristics, particularly particle size and chemical composition, and (ii) the duration, frequency and magnitude of exposure. The potential of particles to be inhaled and deposited in the lung is a function of the aerodynamic characteristics of particles in flow streams. The aerodynamic properties of particles are related to their size, shape and density. The deposition of particles in different regions of the respiratory system depends on their size.

The nasal openings permit very large dust particles to enter the nasal region, along with much finer airborne particulates. These larger particles are deposited in the nasal region by impaction on the hairs of the nose or at the bends of the nasal passages. The smaller particles (PM_{10}) pass through the nasal region and are deposited in the tracheobronchial and pulmonary regions. Then particles are removed by impacting with the wall of the bronchi when they are unable to follow the gaseous streamline flow through subsequent bifurcations of the bronchial tree. As the airflow decreases near the terminal

bronchi, the smallest particles are removed by Brownian motion, which pushes them to the alveolar membrane (CEPA, 1998; Dockery and Pope, 1994).

The air quality guidelines for particulates are given for various particle size fractions, including total suspended particulates (TSP), thoracic particulates or PM_{10} , and respirable particulates or $PM_{2.5}$. Although TSP is defined as all particulates with an aerodynamic diameter of less than 100 µm, and effective upper limit of 30 µm aerodynamic diameter is frequently assigned. The PM_{10} and $PM_{2.5}$ are of concern due to their health impact potentials. As indicated previously, such fine particles are deposited in, and damage the lower airways and gas-exchanging portions of the lung.

The World Health Organization states that the evidence on airborne particulates and public health consistently shows adverse health effects at exposures experienced by urban populations throughout the world. The range of effects is broad, affecting the respiratory and cardiovascular systems and extending from children to adults including large susceptible groups within the general population. Long-term exposure to particulate matter has been found to have adverse effects on human respiratory health (Abbey et al., 1995). Respiratory symptoms in children resident in an industrialised city were initially found not to be associated with long-term exposure to particulate matter; however non-asthmatic symptoms and hospitalizations did increase with increased total suspended particulate concentrations (Hruba et al., 2001). Subsequently, epidemiological evidence shows adverse effects of particles after both short-term and long-term exposures. Current scientific evidence indicates that guidelines cannot be proposed that will lead to complete protection against adverse health effects as thresholds (or no adverse effect levels (NOAEL) have not been identified.

Many scientific studies have linked inhaled particulate matter to a series of significant health problems, including:

- aggravated asthma and associated hospitalisation or emergence department admission, even for coarse particulate (PM_{2.5} to PM₁₀) (Keet et al 2017);
- hospital admissions for respiratory and cardiovascular diseases associated with fine particulate (PM_{2.5}) exposure, even at levels consistently below limit values (Makar et al 2017)
- kidney, bladder and colorectal cancer (Turner et al 2017)
- ischaemic heart disease (Lim et al 2015)
- increases in respiratory symptoms like coughing and difficult or painful breathing;
- chronic bronchitis;
- decreased lung function; and,
- premature death.

PM₁₀ is the standard measure of particulate air pollution used worldwide and studies suggest that asthma symptoms can be worsened by increases in the levels of PM₁₀, which is a complex mixture of particle types. PM₁₀ has many components and there is no general agreement regarding which component(s) could exacerbate asthma. However, pro-inflammatory effects of transition metals, hydrocarbons, ultrafine particles (due to combustion processes) and endotoxins - all present to varying degrees in PM₁₀ - could be important.

Exposure to motor traffic emissions can have a significant effect on respiratory function in children and adults. Studies show that children living near heavily travelled roadways have significantly higher rates of wheezing and diagnosed asthma. Epidemiologic studies suggest that children may be particularly susceptible to diesel exhaust.

2.4 Regulations regarding Air Dispersion Modelling

Air dispersion modelling provides a cost-effective means for assessing the impact of air emission sources, the major focus of which is to determine compliance with the relevant ambient air quality standards. Regulations regarding Air Dispersion Modelling were promulgated in Government Gazette No. 37804 vol. 589; 11 July 2014, (DEA, 2014) and recommend a suite of dispersion models to be applied for regulatory practices as well as guidance on modelling input requirements, protocols and procedures to be followed. The Regulations regarding Air Dispersion Modelling are applicable –

- (a) in the development of an air quality management plan, as contemplated in Chapter 3 of the Air Quality Act (AQA);
- (b) in the development of a priority area air quality management plan, as contemplated in section 19 of the AQA;
- (c) in the development of an atmospheric impact report, as contemplated in section 30 of the AQA; and,
- (d) in the development of a specialist air quality impact assessment study, as contemplated in Chapter 5 of the AQA.

The Regulations have been applied to the development of this report. The first step in the dispersion modelling exercise requires a clear objective of the modelling exercise and thereby gives direction to the choice of the dispersion model most suited for the purpose. Chapter 2 of the Regulations present the typical levels of assessments, technical summaries of the prescribed models (SCREEN3, AERSCREEN, AERMOD, SCIPUFF, and CALPUFF) and good practice steps to be taken for modelling applications.

Dispersion modelling provides a versatile means of assessing various emission options for the management of emissions from existing or proposed installations. Chapter 3 of the Regulations prescribe the source data input to be used in the models. Dispersion modelling can typically be used in the:

- Apportionment of individual sources for installations with multiple sources. In this way, the individual contribution of
 each source to the maximum ambient predicted concentration can be determined. This may be extended to the
 study of cumulative impact assessments where modelling can be used to model numerous installations and to
 investigate the impact of individual installations and sources on the maximum ambient pollutant concentrations.
- Analysis of ground level concentration changes due to different release conditions (e.g. by changing stack heights, diameters and operating conditions such as exit gas velocity and temperatures).
- Assessment of variable emissions due to process variations, start-up, shut-down or abnormal operations.
- Specification and planning of ambient air monitoring programs which, in addition to the location of sensitive receptors, are often based on the prediction of air quality hotspots.

The above options can be used to determine the most cost-effective strategy for compliance with the NAAQS. Dispersion models are particularly useful under circumstances where the maximum ambient concentration approaches the ambient air quality limit value and provide a means for establishing the preferred combination of mitigation measures that may be required including:

- Stack height increases;
- Reduction in pollutant emissions using air pollution control systems (APCS) or process variations;
- Switching from continuous to non-continuous process operations or from full to partial load.

Chapter 4 of the Regulations prescribe meteorological data input from onsite observations to simulated meteorological data. The chapter also gives information on how missing data and calm conditions are to be treated in modelling applications.

Air Quality Impact Assessment for the Der Brochen Expansion Project

Meteorology is fundamental for the dispersion of pollutants because it is the primary factor determining the diluting effect of the atmosphere. Therefore, it is important that meteorology is carefully considered when modelling.

Topography is also an important geophysical parameter. The presence of terrain can lead to significantly higher ambient concentrations than would occur in the absence of the terrain feature. In particular, where there is a significant relative difference in elevation between the source and off-site receptors large ground level concentrations can result. Thus, the accurate determination of terrain elevations in air dispersion models is very important.

The modelling domain would normally be decided on the expected zone of influence; the latter extent being defined by the predicted ground level concentrations from initial model runs. The modelling domain must include all areas where the ground level concentration is significant when compared to the air quality limit value (or other guideline). Air dispersion models require a receptor grid at which ground-level concentrations can be calculated. The receptor grid size should include the entire modelling domain to ensure that the maximum ground-level concentration is captured and the grid resolution (distance between grid points) sufficiently small to ensure that areas of maximum impact adequately covered. No receptors however should be located within the property line as health and safety legislation (rather than ambient air quality standards) is applicable within the site.

Chapter 5 provides general guidance on geophysical data, model domain and coordinates system required in dispersion modelling, whereas Chapter 6 elaborates more on these parameters as well as the inclusion of background air concentration data. The chapter also provides guidance on the treatment of NO₂ formation from NO_x emissions, chemical transformation of sulfur dioxide into sulfates and deposition processes.

Chapter 7 of the Regulations outline how the plan of study and modelling assessment reports are to be presented to authorities.

2.5 Regulations Regarding Report Writing

This report complies with the requirements of the National Environmental Management Act, 1998 (NEMA, No 107 of 1998) and the environmental impact assessment (EIA) regulations (GNR 982 of 2014), as amended. Table 2-3 provides a summary of the requirements, with cross references to the report sections where these requirements have been addressed.

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 must contain:	Relevant section in report
Details of the specialist who prepared the report	Section 1.4
The expertise of that person to compile a specialist report including a curriculum vitae	Section 1.4.2 Appendix A
A declaration that the person is independent in a form as may be specified by the competent authority	Section 1.4.1 Appendix B
An indication of the scope of, and the purpose for which, the report was prepared	Section 1.2
An indication of the quality and age of base data used for the specialist report;	Section 3.2 Section 3.3
A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change	Section 4
The duration, date and season of the site investigation and the relevance of the season to the outcome	Section 3.2

Table 2-3: Specialist report requirements in terms of Appendix 6 of the EIA Regulations (2014), as amended

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 must contain:	Relevant section in report			
of the assessment	Section 4.2			
A description of the methodology adopted in preparing the report or carrying out the specialised process inclusive of equipment and modelling used;	Section 1.5			
Details of an assessment of the specific identified sensitivity of the site related to the proposed activity or activities and its associated structures and infrastructure, inclusive of a site plan identifying site alternative;	Section 3.1			
An identification of any areas to be avoided, including buffers	Section 3.1			
A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Section 4.2			
A description of any assumptions made and any uncertainties or gaps in knowledge;	Section 1.6			
A description of the findings and potential implications of such findings on the impact of the proposed activity or activities	Section 4.2			
Any mitigation measures for inclusion in the EMPr	Section 4.1.2 Section 4.2.3 Section 4.3.2			
Any conditions for inclusion in the environmental authorisation	Section 6.2 Section 7.2			
Any monitoring requirements for inclusion in the EMPr or environmental authorisation	Section 6.2.3			
A reasoned opinion as to whether the proposed activity or portions thereof should be authorised	Section 7.2			
Regarding the acceptability of the proposed activity or activities; and	Section 4.2			
If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	Section 4.1.2 Section 4.2.3 Section 4.3.2 Section 6.2.2 Section 7.2			
A description of any consultation process that was undertaken during the course of carrying out the study	Not applicable			
A summary and copies if any comments that were received during any consultation process	None received			
Any other information requested by the competent authority.	Not applicable			

3 RECEIVING ENVIRONMENT

3.1 Air Quality Sensitive Receptors

The closest residential developments to the Der Brochen Mine consist of Ga-Masha (~10 km northwest), Patantswane (~20 km west-northwest), Eenzaam (~20 km west), Matlakatle (~25 km west-northwest), Ngwaritsi (~25 km west), Syferfontein (~30 km west), Dindela (~40 km west), Mathula (~35 km west-southwest), Sehlakwane (~35 km southwest), Roosenekaal (~25 km southwest), Lydenburg (~30 km east-southeast), Ga-Mampuru (~13 km north) and Steelpoort (~18 km northeast). Individual farmsteads also surround the mine area (Figure 1-1).

3.2 Terrain

Readily available terrain data was obtained from the United States Geological Survey (USGS) web site (https://earthexplorer.usgs.gov/). A study was made of Shuttle Radar Topography Mission (SRTM) 1 arc-sec data. The topography for the study area is provided in Figure 3-1.

Figure 3-1: Terrain elevation over the study area

3.3 Climate and Atmospheric Dispersion Potential

Meteorological mechanisms direct the dispersion, transformation and eventual removal of pollutants from the atmosphere. The extent to which pollution will accumulate or disperse in the atmosphere is dependent on the degree of thermal and mechanical turbulence within the earth's boundary layer. This dispersion comprises vertical and horizontal components of motion. The stability of the atmosphere and the depth of the surface-mixing layer define the vertical component. The horizontal dispersion of pollution in the boundary layer is primarily a function of the wind field. The wind speed determines both the distance of downwind transport and the rate of dilution as a result of plume 'stretching'. The generation of mechanical turbulence is similarly a function of the wind speed, in combination with the surface roughness. The wind direction, and the variability in wind direction, determines the general path pollutants will follow, and the extent of crosswind spreading. The pollution concentration levels therefore fluctuate in response to changes in atmospheric stability, to concurrent variations in the mixing depth, and to shifts in the wind field (Tiwary and Colls, 2010).

The spatial variations, and diurnal and seasonal changes, in the wind field and stability regime are functions of atmospheric processes operating at various temporal and spatial scales (Goldreich and Tyson, 1988). The atmospheric processes at macro- and meso-scales need therefore be taken into account in order to accurately parameterise the atmospheric dispersion potential of a particular area. A qualitative description of the synoptic systems determining the macro-ventilation potential of the region may be provided based on the review of pertinent literature. These meso-scale systems may be investigated through the analysis of meteorological data observed for the region.

Since no weather measurements are available from the proposed project site, meteorological information was obtained from the Weather Research and Forecasting mesoscale model (known as WRF).

The WRF Model is a next-generation mesoscale numerical weather prediction system designed for both atmospheric research and operational forecasting needs. It features two dynamical cores, a data assimilation system, and a software architecture facilitating parallel computation and system extensibility. The model serves a wide range of meteorological applications across scales from tens of meters to thousands of kilometres. WRF can generate atmospheric simulations using real data (observations, analyses) or idealized conditions. WRF offers operational forecasting a flexible and computationally-efficient platform, while providing recent advances in physics, numeric, and data assimilation contributed by developers across the very broad research community.

WRF data for the period 2015 to 2017 was used.

3.3.1 Local Wind Field

The vertical dispersion of pollution is largely a function of the wind field. The wind speed determines both the distance of downward transport and the rate of dilution of pollutants. The generation of mechanical turbulence is similarly a function of the wind speed, in combination with the surface roughness (Tiwary and Colls, 2010).

The wind roses comprise 16 spokes, which represent the directions from which winds blew during a specific period. The colours used in the wind roses below, reflect the different categories of wind speeds; the yellow area, for example, representing winds in between 4 and 5 m/s. The dotted circles provide information regarding the frequency of occurrence of wind speed and direction categories. The frequency with which calms occurred, i.e. periods during which the wind speed was below 1 m/s are also indicated.

The flow field is dominated by south-easterly winds with a >20% frequency of occurrence (Figure 3-2). Thermo-topographical induced flow is anticipated to represent an important component in the airflow over the study area with significant differences evident between day-time and night-time wind field characteristics. The slope of the terrain accounts for the increased frequency of occurrence of northerly and north-westerly wind during the day-time and increased south-easterly winds during the night-time. The differential heating and cooling of the air along a slope typically results in down-slope (katabatic) flow at night, with low-level up-slope (anabatic) airflow occurring during the day.

Figure 3-2: Period, day-, and night-time wind roses (WRF data, 2015 to 2017)

3.3.2 Ambient Temperature

Air temperature is important, both for determining the effect of plume buoyancy (the larger the temperature difference between the emission plume and the ambient air, the higher the plume is able to rise), and determining the development of the mixing and inversion layers.

Monthly mean, maximum and minimum temperatures are given in Table 3-1. Diurnal temperature variability is presented in Figure 3-3. Temperatures ranged between 6.1°C and 29.5°C. During the day, temperatures increase to reach maximum at about 15:00 in the late afternoon. Ambient air temperature decreases to reach a minimum at between 05:00 and 06:00.

Monthly Minimum, Maximum and Average Temperatures (°C)												
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov D									Dec			
Minimum	14.8	15.0	13.4	11.2	8.3	6.1	6.2	7.4	10.9	13.1	13.5	15.5
Maximum	28.7	28.9	28.4	26.3	24.3	21.6	21.5	24.3	27.2	27.9	28.0	29.5
Average	21.4	21.4	20.3	17.8	15.1	12.5	12.6	14.9	18.3	20.2	20.5	22.2

Table 3-1: Monthly temperature summary (WRF data, 2015 to 2017)

Figure 3-3: Diurnal temperature profile (WRF data, 2015 to 2017)

3.3.3 Atmospheric Stability and Mixing Depth

The new generation air dispersion models differ from the models traditionally used in a number of aspects, the most important of which are the description of atmospheric stability as a continuum rather than discrete classes. The atmospheric boundary layer properties are therefore described by two parameters; the boundary layer depth and the Monin-Obukhov length, rather than in terms of the single parameter Pasquill Class. The Monin-Obukhov length (LMo) provides a measure of the importance of buoyancy generated by the heating of the ground and mechanical mixing generated by the frictional effect of the earth's surface. Physically, it can be thought of as representing the depth of the boundary layer within which mechanical mixing is the dominant form of turbulence generation (CERC, 2004). The atmospheric boundary layer constitutes the first few hundred metres of the atmosphere. During the daytime, the atmospheric boundary layer is characterised by thermal turbulence due to the heating of the earth's surface. Night times are characterised by weak vertical mixing and the predominance of a stable layer. These conditions are normally associated with low wind speeds and less dilution potential. During windy and/or cloudy conditions, the atmosphere is normally neutral. For low level releases, the highest ground level

concentrations would occur during weak wind speeds and stable (night-time) atmospheric conditions. Diurnal variation in atmospheric stability for the site is provided in Figure 3-4.

3.4 Ambient Air Quality within the Region

Der Brochen currently operate a dustfall sampling network consisting of nine single dust fallout buckets (Table 3-2) (Figure 3-5). Measured dustfall from the three mines for the period April 2017 to November 2018 was provide for this assessment (Table 3-3 and Figure 3-6).

Single Dust Bucket	Latitude	Longitude
S1	S25.03136	E30.11573
S2	S25.02513	E30.11031
S3	S25.04232	E30.11512
S4	S25.02826	E30.11791
S5	S25.00785	E30.15050
S6	S25.03119	E30.12510
S7	S24.98054	E30.08749
S8	S25.06090	E30.11743
S9	S25.02029	E30.14353
S10	S25.01189	E30.14170

Table 3-2: Location of the single dust fallout buckets for Der Brochen

From the dustfall sampled during the period April 2017 to November 2018, no exceedances of the NDCR non-residential standard of 1200 mg/m²/day and residential standard of 600 mg/m²/day (which allows for two exceedances in a year, not sequential months) was measured at Der Brochen. The highest dust fallout was measured at S10 during the period November 2018 (3090 mg/m²/day).

Figure 3-5: Location of the dust fallout network for Der Brochen

Table 3-3: Measured dust fallout at Der Brochen for the period April 2017 to November 2018

Period	Dust Fallout Levels (mg/m²/day)										
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	
Apr-17	68	77	448	83	42	149	Dust	167			
May-17	73	93	66	145	121	79	bucket	119			

Air Quality Impact Assessment for the Der Brochen Expansion Project

Deviad	Dust Fallout Levels (mg/m²/day)											
Period	S1	S2	S 3	S4	S5	S 6	S 7	S 8	S9	S10		
Jun-17	2	3	12	70	5	5	stolen	12				
Jul-17	22	19	2	95	1	28		105				
Aug-17	5	2	1	49	21	5		17				
Sep-17	54	38	46	104	79	53		76				
Oct-17	105	89	94	100	68	131		132				
Nov-17	80	69	66	50	278	66		114				
Dec-17	93	177	97	109	201	217		180				
Jan-18	85	92	63	87	92	127		138				
Feb-18	120	110	112	90	286	126		252				
Mar-18	53	10	98	47	Dust Bucket damaged	17		76				
Apr-18	108	129	92	101	109	79		193				
May-18	103	21	9	14		31		76				
Jun-18	59	72	104	73	Dust	38		103				
Jul-18	40	17	32	56	stand damaged	damaged	27		64			
Aug-18	83	45	21	61		60		92				
Sep-18	101	106	97	188	Installed 13 Sep 2018	687		91	Installed 13 Sep 2018	Installed 13 Sep 2018		
Oct-18	240	96	107	112	316	104		205	405	Damage due to fire		
Nov-18	158	148	106	147	715	143		183	1040	3090		

Figure 3-6: Measured dust fallout at Der Brochen for the period April 2017 to November 2018
3.5 Existing Sources of Emissions near the Project

The sources of SO₂ and oxides of nitrogen (NO_x) that occur in the region include blasting operations at mines, veld burning, vehicle exhaust emissions and household fuel burning.

Various local and far-a-field sources are expected to contribute to the suspended fine particulate concentrations (which would include PM₁₀ and PM_{2.5}) in the region. Local sources include wind erosion from exposed areas, fugitive dust from agricultural and mining operations, vehicle entrainment from roadways and veld burning. Long-range transport of particulates, emitted from remote tall stacks and from large-scale biomass burning in countries to the north of South Africa, has been found to contribute significantly to background fine particulate concentrations over the interior (Andreae, et al., 1996) (Garstang, et al., 1996) (Piketh, et al., 1996).

3.5.1 *Materials handling*

Materials handling operations associated with mining activities in the area include the transfer of material by means of tipping, loading and off-loading of trucks. The quantity of dust that will be generated from such loading and off-loading operations will depend on various climatic parameters, such as wind speed and precipitation, in addition to non-climatic parameters such as the nature (i.e. moisture content) and volume of the material handled.

3.5.2 Household Fuel Burning

Despite the intensive national electrification program, a large number of households continue to burn fuel to meet all or a portion of their energy requirements. The main fuels with air pollution potentials used by households within the study region are coal, wood and paraffin.

Coal burning emits a large amount of gaseous and particulate pollutants including sulfur dioxide, heavy metals, total and respirable particulates including heavy metals and inorganic ash, carbon monoxide, polycyclic aromatic hydrocarbons, and benzo(a)pyrene. Polyaromatic hydrocarbons are recognised as carcinogens. Pollutants arising due to the combustion of wood include respirable particulates, nitrogen dioxide, carbon monoxide, polycyclic aromatic hydrocarbons, particulate benzo(a)pyrene and formaldehyde. The main pollutants emitted from the combustion of paraffin are NO₂, particulates carbon monoxide and polycyclic aromatic hydrocarbons.

3.5.3 Biomass Burning

The biomass burning includes the burning of evergreen and deciduous forests, woodlands, grasslands, and agricultural lands. Within the project vicinity, crop-residue burning and wild fires (locally known as veld fires) may represent significant sources of combustion-related emissions.

The biomass burning is an incomplete combustion process, with carbon monoxide, methane and nitrogen dioxide gases being emitted. Approximately 40% of the nitrogen in biomass is emitted as nitrogen, 10% is left is the ashes, and it may be assumed that 20% of the nitrogen is emitted as higher molecular weight nitrogen compounds (Held et al, 1996). The visibility of the smoke plumes is attributed to the aerosol (particulate matter) content. In addition to the impact of biomass burning within the vicinity of the proposed mining activity, long-range transported emissions from this source can be expected to

impact on the air quality between the months August to October. It is impossible to control this source of atmospheric pollution loading; however, it should be noted as part of the background or baseline condition before considering the impacts of other local sources.

3.5.4 Vehicle Exhaust Emissions

Air pollution from vehicle emissions may be grouped into primary and secondary pollutants. Primary pollutants are those emitted directly into the atmosphere, and secondary, those pollutants formed in the atmosphere as a result of chemical reactions, such as hydrolysis, oxidation, or photochemical reactions. The significant primary pollutants emitted by motor vehicles include carbon dioxide (CO₂), CO, hydrocarbon compounds (HC), SO₂, NO_x and particulate matter (PM). Secondary pollutants include NO₂, photochemical oxidants (e.g. ozone), HC, sulfur acid, sulfates, nitric acid and nitrate aerosols.

3.5.5 Fugitive Dust Emissions from Open Cast Mining

Open cast mines are associated with significant dust emissions, sources of which include land clearing, blasting and drilling operations, materials handling, vehicle entrainment, crushing, screening (etc.).

Mining activities in the area include the operational Glencore Mines and the Two Rivers Mine to the north and Northam's Booysendal Mine directly south.

3.5.6 Other Fugitive Dust Sources

Fugitive dust emissions may occur as a result of vehicle entrained dust from local paved and unpaved roads, wind erosion from open areas and dust generated by agricultural activities (e.g. tilling) and mining. The extent of particulate emissions from the main roads will depend on the number of vehicles using the roads and on the silt loading on the roadways.

Windblown dust generates from natural and anthropogenic sources. For wind erosion to occur, the wind speed needs to exceed a certain threshold, called the threshold velocity. This relates to gravity and the inter-particle cohesion that resists removal. Surface properties such as soil texture, soil moisture and vegetation cover influence the removal potential. Conversely, the friction velocity or wind shear at the surface is related to atmospheric flow conditions and surface aerodynamic properties. Thus, for particles to become airborne, its erosion potential has to be restored; that is, the wind shear at the surface must exceed the gravitational and cohesive forces acting upon them, called the threshold friction velocity. Every time a surface is disturbed, its erosion potential is restored (US EPA, 2004). Erodible surfaces may occur as a result of agriculture and/or grazing activities.

4 IMPACTS FROM THE PROPOSED PROJECT ON THE RECEIVING ENVIRONMENT

4.1 Planning/Design and Construction Phase

4.1.1 Identification of Environmental Aspects

The construction phase will comprise a series of different operations including land clearing, topsoil removal, material loading and hauling, stockpiling, grading, bulldozing, compaction, (etc.). Each of these operations has its own duration and potential for dust generation. It is anticipated therefore that the extent of dust emissions would vary substantially from day to day depending on the level of activity, the specific operations, and the prevailing meteorological conditions. This is in contrast to most other fugitive dust sources where emissions are either relatively steady or follow a discernible annual cycle.

A list of all the potential dust generation activities expected during the construction phase is provided in Table 4-1. Unmitigated construction activities provide the potential for impacts on local communities, primarily due to nuisance and aesthetic impacts associated with fugitive dust emissions. On-site dustfall may also represent a nuisance to employees.

Impact due to the construction phase was not assessed as detailed information was not provided for this phase. The emission sources for this phase, however, would be of a relatively short-term duration and the impact would be near to site.

Impact	Source	Activity
Gasses	Vehicle tailpipe	Transport and general construction activities
		Clearing of groundcover
PM_{10} and $PM_{2.5}$	Stockpile areas and open areas	Levelling of area
		Wind erosion from open areas
		Materials handling
	Tuonoo ontinfuo atu uatuna	Clearing of vegetation and topsoil
	i ransport infrastructure	Levelling of areas

Table 4-1: Typical sources of fugitive particulate emission associated with construction

4.1.2 Mitigation Measures Recommended

Incremental PM₁₀ and PM_{2.5} concentrations and deposition rates due to the Construction Phase of the proposed project will be of relatively short-term and of local impact. The implementation of effective controls, however, during this phase would also serve to set the precedent for mitigation during the operational phase.

Dust control measures which may be implemented during the construction phase are outlined in Table 4-2. Control techniques for fugitive dust sources generally involve watering, chemical stabilization, and the reduction of surface wind speed though the use of windbreaks and source enclosures.

Construction Activity	Recommended Control Measure(s)
Materials storage, handling and transfer operations	Wet suppression where feasible on stockpiles and materials handling activities
Open areas (windblown emissions)	Minimise extent of disturbed areas.
	Reduction of frequency of disturbance.
	Early re-vegetation
	Stabilisation (chemical, rock cladding or vegetative) of disturbed soil

Table 4-2: Dust control measures that may be implemented during construction activities

4.2 Operational Phase

4.2.1 Identification of Environmental Aspects

In terms of air quality, atmospheric emissions represent the environmental aspects of concern for the assessment of the proposed project. The sources of these emissions were determined by first identifying the inputs and outputs to the various processes and secondly considering the disturbance to the environment by the proposed operations. Possible aspects associated with the proposed operations of relevance in terms of air quality impacts are listed in Table 4-3. Particulates present the main pollutant of concern from mining operations.

Table 4-3: Potential air pollutants emitted from the proposed project

	Operational phase									
Aspects	Source	Activities								
Vehicle Entrainment	·									
Gaseous and particulate	Vehicle activity on paved and	Transportation of Run of Mine (ROM) from opencast mine to crusher plant								
		Transportation of product								
Material handling										
Fugitive dust Materials handling operations		Remove ROM from underground and opencast mining areas Tip ROM at crushers Tip from crusher to product stockpile Reclaim from stockpile Tipping of product at load-out area Primary crushing Transport of ROM from underground operations to beneficiation plant via overland conveyor								
In-pit mining operations										
Fugitive dust	Mining operations within open pit	Topsoil removal Drilling and blasting of seam and overburden Removal of ROM by excavator and loading of haul trucks Overburden replacement Grading of covered pit areas								
Storage piles										
Fugitive dust	Wind erosion	Windblown dust from storage piles								

Operational phase								
Aspects	Source	Activities						
Vents								
Gaseous and particulate emissions	Vent emissions	Vent emissions due to routine operations.						

4.2.2 Quantification of Environmental Aspects and Impact Classification

4.2.2.1 Emissions Inventory

The operation phase is assessed quantitatively with the emissions provided in the current section. The emission factors and calculated emission rates are provided in Table 4-4.

For current operations, windblown dust from the Helena Tailings Storage Facility (TSF) and Mareesburg TSF (Stage 1) were taken into account.

For proposed operations, windblown dust from the Helena TSF and Mareesburg TSF (Stage 1 and Stage 2) were quantified, as well as the emissions from the conveyor and updraft vents. It should be noted that the Run of Mine (ROM) from the underground mining operations will initially be transported via trucks until the conveyor is operational. For this assessment the impacts from the temporary truck transport has also been assessed. The transport of ROM from the opencast mining section will be transported to the crusher plant via trucks.

Activity	Emission Equation/Emission Factor	Source	Information Assumed/Provided
Wind Erosion	$E(i) = G(i)10^{(0.134(\% clay)-6)}$ For	Marticorena & Bergametti, 1995	Particle size distribution was obtained from previous air quality assessments completed for this site (Table 4-5).
	$G(i) = 0.261 \left[\frac{P_a}{g}\right] u^{*3} (1+R)(1-R^2)$		Layout of tailings storage facilities (TSFs) was provided.
	And		Hourly emission rate file was calculated and simulated.
	$R = \frac{{u_*}^t}{u^*}$		The storage piles were simulated at a release height of 0 m.
	where,		
	$E_{(i)}$ = emission rate (g/m²/s) for particle size class i P_a = air density (g/cm³) G = gravitational acceleration (cm/s³) w_a = threshold friction velocity (m/s) for particle size i		40% of the active TSF was assumed to be wet.
	u^* = friction velocity (m/s) for particle size i u^* = friction velocity (m/s)		
Vent Shafts	Occupational exposure limits PM ₁₀ = 10 mg/m ³	ACGIH TLVs 1996 –	Parameters were assumed as follows:
	$PM_{2.5} = 5 mg/m^3$	Occupational	- Diameter: 5 m
		Guideinies	- Height: 21 m

Table 4-4: Emission factors used to qualify the routine emissions from the operational phase for the project

Activity	Emission Equation/Emission Factor	Source	Information Assumed/Provided
			Parameters were provided as follows:
			- Exit velocity: 18 m/s
_			
Conveyor	$E = c(u^* - u_t^*)$ The logarithmic wind speed profile may be used to estimate friction velocities from wind speed data recorded at a reference anemometer height of 10 m (EPA, 1999): u* =0.053 u ₁₀ . This equation assumes a typical roughness height of 0.5 cm for open terrain and is restricted to large relatively flat piles or exposed areas with little penetration into the surface layer. Parrett's (1992) estimate of u* over coal and rock surfaces was determined as typically 0.11 times the 10-metre level wind speed. Furthermore, the threshold wind speed (u*t) for rock dust to be lifted (particles in the 20-30 µm range) is 3.1 m/s. The value for u*t therefore is typically 0.34 m/s. Emissions for wind speeds below 3.1 m/s are likely to be negligible.	GHD/Oceanics (1975) (as reported by Parrett, 1992) for measured conveyor emissions at a wind speed of 10 m/s	Hourly emissions from the overland conveyor were calculated using hourly wind speed records from the WRF data. The estimated particulate emissions from the total length of the overland conveyor are: - TSP: 52.2 g/s - PM ₁₀ : 23.5 g/s - PM _{2.5} : 2.3 g/s A control efficiency of 65% was assumed for the mitigated scenario (top and one side covering).
Materials handling	$E = 0.0016 \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$	US-EPA AP42 Section 13.2.4	An average wind speed of 5.2 m/s was used based on the modelled WRF data for the period 2015 to 2017.
	Where, E = Emission factor (kg dust / t transferred) U = Mean wind speed (m/s) M = Material moisture content (%) The PM _{2.5} , PM ₁₀ and TSP fraction of the emission factor is 5.3% 35% and 74% respectively.		The throughput of the ROM material was provided as 320 000 tpm. The moisture of the ROM was assumed to be 3%.
Vahiala antrainment			In the charges of site analitie silt
on unpaved surfaces	$E = k(s/12)^{\alpha}(W/3)^{\beta}$ Where, E = size-specific emission factor (lb/VKT) s = surface material silt content (%) W = mean vehicle weight (tons)	Section 13.2.2	The haul trucks used for the opencast operations was provided as
			CAT773E.
	The particle size multiplier (k) is given as 0.15 for $PM_{2.5}$, 1.5 for PM_{10} , and as 4.9 for TSP. A is given as 0.9 for $PM_{2.5}$ and PM_{10} and 0.7 for TSP. A is given as 0.45 for $PM_{2.5}$, PM_{10} and TSP.		The capacity of the haul trucks to be used temporarily from the underground mining operations was given to be 33 tons for the transport of ROM.
			A control efficiency of 75% was assumed for the mitigated scenario (this can be achieved by wetting of road surfaces).

Activity	Emission Equation/Emission Factor	Source	Information Assumed/Provided
Drilling	$E_{TSP} = 0.59 \ kg \ of \ dust \ /drill \ hole$	NPI Section: Mining	160 drill holes per blast was provided.
	PM_{10} is given as 52% of TSP emissions and $PM_{2.5}$ is assumed to be 3% of TSP emissions		
Blasting	$E_{TSP} = 0.00022 \ x \ A^{1.5}$	NPI Section: Mining	A blast area of 50 m x 30 m was provided.
	Where,		
	A = area blasted in m²		As blasting activities are intermittent
	PM_{10} is given as 52% of TSP emissions and $PM_{2.5}$ is assumed to be 3% of TSP emissions		emissions from this activity was quantified but not modelled.
Crushing and	Primary (for low moisture ore):	NPI Section:	It was provided that primary crushing
screening	$E_{TSP} = 0.2 \ kg/t \ material \ processed$	Mining	takes places at the plant.
	$E_{PM10} = 0.02 \ kg/t \ material \ processed$		
	$E_{PM2.5} = 0.0037 \ kg/t \ material \ processed$		50% control efficiency was assumed for the mitigated scenario.
	Fraction of PM _{2.5} taken from US-EPA crushed stone emission factor ratio for tertiary crushing		

Table 4-5: Particle size distribution (provided as a fraction) for the storage pile material

Size (µm)	Fraction
2000	0.01
425	0.075
250	0.145
150	0.14
75	0.225
50	0.16
10	0.06
5	0.035
2	0.15

4.2.2.2 Synopsis of Particulate Emissions from Various Sources at the Project due to Current and Proposed Operational Activities

Particulate emissions calculated for various source types are given in Table 4-6. Both unmitigated and mitigated (applying 75% control efficiency on unpaved road surfaces, 65% control efficiency on conveyor and 50% control efficiency on crushing activities) conditions were assessed. For unmitigated operations, vehicle entrainment on unpaved surfaces represents the most significant source of particulate emissions. Windblown dust from the TSFs and emissions from the vents are also significant sources of particulate emissions.

	E	missions (tp	a)	%	Rank		
ACTIVITY	TSP	PM 10	PM _{2.5}	TSP	PM 10	PM _{2.5}	TSP
	Curre	nt operation	s				
Wind Blown dust from TSFs	235.15	234.91	200.63	100.00	100.00	100.00	1
TOTAL	235.15	234.91	200.63	100.00	100.00	100.00	
Proposed Operations (assumin	g the transp	ort of ROM f	rom underg	round opera	tions via tru	ck)	
	Un	mitigated					
Wind Blown dust from TSFs	522.39	521.86	445.70	14.36	22.59	58.62	2
Materials handling	62.34	29.49	4.47	1.71	1.28	0.59	5
Vents	334.37	334.37	167.19	9.19	14.48	21.99	3
Vehicle entrainment	2 594.45	1 405.12	140.51	71.33	60.83	18.48	1
Crushing and Screening	108.00	10.80	2.00	2.97	0.47	0.26	4
Drilling and blasting	15.62	8.12	0.47	0.43	0.35	0.06	6
TOTAL	3 637.17	2 309.76	760.33	100.00	100.00	100.00	
Mitigated: control efficiency of 75% a	pplied to un	paved roads	and 50% C	E applied to	crushing op	erations	
Wind Blown dust from TSFs	522.39	521.86	445.70	35.53	48.17	78.14	2
Materials handling	62.34	29.49	4.47	4.24	2.72	0.78	4
Vents	167.19	167.19	83.59	11.37	15.43	14.66	3
Vehicle entrainment	648.61	351.28	35.13	44.12	32.43	6.16	1
Crushing and Screening	54.00	5.40	1.00	3.67	0.50	0.18	5
Drilling and blasting	15.62	8.12	0.47	1.06	0.75	0.08	6
TOTAL	1 470.15	1 083.33	570.35	100.00	100.00	100.00	
Proposed Operations (assuming t	the transport	t of ROM fro	m undergro	und operatio	ons via conv	eyor)	
	Un	mitigated					
Wind Blown dust from TSFs	522.39	521.86	445.70	23.70	34.58	65.50	2
Materials handling	70.23	33.22	5.03	3.19	2.20	0.74	6
Vents	334.37	334.37	167.19	15.17	22.16	24.57	3
Vehicle entrainment	889.81	481.91	48.19	40.37	31.94	7.08	1
Conveyor	263.74	118.68	11.87	11.97	7.87	1.74	4
Crushing and Screening	108.00	10.80	2.00	4.90	0.72	0.29	5
Drilling and blasting	15.62	8.12	0.47	0.71	0.54	0.07	7
TOTAL	2 204.15	1 508.96	680.44	100.00	100.00	100.00	
Mitigated: control efficiency of 65% applied to co	nveyor, 75% crushi	6 control effi ng operatior	ciency appli 1s	ied to unpav	ed roads and	d 50% CE ap	plied to
Wind Blown dust from TSFs	522.39	521.86	445.70	45.66	58.13	80.74	1
Materials handling	70.23	33.22	5.03	6.14	3.70	0.91	5
Vents	167.19	167.19	83.59	14.61	18.62	15.14	3
Vehicle entrainment	222.45	120.48	12.05	19.44	13.42	2.18	2
Conveyor	92.31	41.54	4.15	8.07	4.63	0.75	4
Crushing and Screening	54.00	5.40	1.00	4.72	0.60	0.18	6
Drilling and blasting	15.62	8.12	0.47	1.37	0.90	0.08	7
TOTAL	1 144.18	897.80	551.99	100.00	100.00	100.00	

Table 4-6: Particulate emissions due to routine operations for the project

4.2.2.3 Dispersion Simulation Results and Compliance Assessment

Simulations were undertaken to determine particulate matter (PM₁₀ and PM_{2.5}) concentrations and total daily dust deposition from project activities. For compliance, reference was made to NAAQS and NDCR. The plots provided for the relevant pollutants of concern during the operational phase are given in Table 4-7.

Pollutant	Scenario	Operating Conditions	Figure
	Baseline operations ^(a)	Unmitigated operations	4-1
PM10	Proposed operations	Unmitigated operations	4-2
	assuming the temporary hauling of ROM via truck ^(b)	Mitigated operations (assuming 75% control efficiency (CE) on the unpaved roads)	4-3
	Proposed operations	Unmitigated operations	4-4
	assuming the transport of ROM from underground mining areas to plant vial conveyor ^(c)	Mitigated operations (assuming 65% CE on the overland conveyor)	4-5
	Baseline operations ^(a)	Unmitigated operations	4-6
PM2.5	Proposed operations	Unmitigated operations	4-7
	assuming the temporary hauling of ROM via truck ^(b)	Mitigated operations (assuming 75% CE on the unpaved roads)	4-8
	Proposed operations	Unmitigated operations	4-9
	assuming the transport of ROM from underground mining areas to plant vial conveyor ^(c)	Mitigated operations (assuming 65% CE on the overland conveyor)	4-10
	Baseline operations ^(a)	Unmitigated operations	4-11
	Proposed operations	Unmitigated operations	4-12
TSP	assuming the temporary hauling of ROM via truck ^(b)	Mitigated operations (assuming 75% CE on the unpaved roads)	4-13
PM10	Proposed operations	Unmitigated operations	4-14
	assuming the transport of ROM from underground mining areas to plant vial conveyor ^(c)	Mitigated operations (assuming 65% CE on the overland conveyor)	4-15

Table 4-7: Isopleth plots presented in the current section

(a) Baseline operations consist of windblown dust from Helena TSF and Mareesburg TSF (Stage 1)

(b) Proposed operations consist of windblown dust from Helena TSF and Mareesburg TSF (Stage 1 and Stage 2), materials handling, emissions from updraft vents, opencast mining operations, crushing operations, vehicle entrainment for the transport of ROM from the opencast mining area and vehicle entrainment from the temporary transport of ROM from the underground mining area via trucks.

(c) Proposed operations consist of windblown dust from Helena TSF and Mareesburg TSF (Stage 1 and Stage 2), materials handling, emissions from updraft vents, opencast mining operations, crushing operations, vehicle entrainment for the transport of ROM from the opencast mining area and emissions from the conveyor.

Figure 4-1: Area of non-compliance of PM_{10} NAAQS due to baseline operations

Figure 4-2: Area of non-compliance of PM₁₀ NAAQS due to unmitigated project operations (assuming the temporary transport of ROM via trucks)

Figure 4-3: Area of non-compliance of PM₁₀ NAAQS due to mitigated project operations (assuming the temporary transport of ROM via trucks – with 75% control efficiency on unpaved roads)

Figure 4-4: Area of non-compliance of PM₁₀ NAAQS due to unmitigated project operations (assuming the transport of ROM via conveyor)

Figure 4-5: Area of non-compliance of PM₁₀ NAAQS due to mitigated project operations (assuming the transport of ROM via conveyor – with 65% control efficiency on the conveyor)

Figure 4-6: Area of non-compliance of $\mathsf{PM}_{2.5}$ NAAQS due to baseline operations

Figure 4-7: Area of non-compliance of PM_{2.5} NAAQS due to unmitigated project operations (assuming the temporary transport of ROM via trucks)

Figure 4-8: Area of non-compliance of PM_{2.5} NAAQS due to mitigated project operations (assuming the temporary transport of ROM via trucks – with 75% control efficiency on unpaved roads)

Figure 4-9: Area of non-compliance of PM_{2.5} NAAQS due to unmitigated project operations (assuming the transport of ROM via conveyor)

Figure 4-10: Area of non-compliance of PM_{2.5} NAAQS due to mitigated project operations (assuming the transport of ROM via conveyor – with 65% control efficiency on the conveyor)

Figure 4-11: Total particulate deposition due to baseline operations

Figure 4-12: Total particulate deposition due to unmitigated project operations (assuming the temporary transport of ROM via trucks)

Figure 4-13: Total particulate deposition due to mitigated project operations (assuming the temporary transport of ROM via trucks – with 75% control efficiency on unpaved roads)

Figure 4-14: Total particulate deposition due to unmitigated project operations (assuming the transport of ROM via conveyor)

Figure 4-15: Total particulate deposition due to mitigated project operations (assuming the transport of ROM via conveyor – with 65% control efficiency on the conveyor)

Simulated particulate (PM_{10} and $PM_{2.5}$) impacts for all averaging periods are within the NAAQS and NDCR at all selected sensitive receptors within the study area.

The highest PM_{10} concentrations due to proposed project operations (unmitigated) are in compliance with NAAQS at the closest sensitive receptors for all scenarios reducing in magnitude and spatial distribution with mitigation (assuming 75% on unpaved roads, 50% control efficiency on crushing activities and 65% control efficiency on conveyor) (Figure 4-2 to Figure 4-5).

The highest $PM_{2.5}$ concentrations due to proposed project operations (unmitigated) are in compliance with NAAQS at the closest sensitive receptors for all four scenarios. When activities are mitigated (assuming 75% on unpaved roads, 50% control efficiency on crushing activities and 65% control efficiency on conveyor) the $PM_{2.5}$ concentrations reduce in spatial distribution (Figure 4-7 to Figure 4-10).

Maximum daily dust deposition is within with the NDCR for residential areas at the closest sensitive receptors for all modelled scenarios (Figure 4-11 to Figure 4-15).

4.2.2.4 Cumulative Impacts

No ambient PM_{10} and $PM_{2.5}$ ground level concentrations are measured within the study area. Cumulative impacts could therefore not be assessed.

4.2.2.5 **Predicted Impacts on Vegetation and Animals**

No national ambient air quality standards or guidelines are available for the protection of animals and vegetation. In the absence of national ambient standards for animals, the standards used for the protection of human beings may be used to assess the impacts on animals. Areas of non-compliance of PM_{10} and $PM_{2.5}$ NAAQS due to the project operations are provided in Section 4.2.2.2.

While there is little direct evidence of what the impact of dustfall on vegetation is under a South African context, a review of European studies has shown the potential for reduced growth and photosynthetic activity in Sunflower and Cotton plants exposed to dust fall rates greater than 400 mg/m²/day (Farmer, 1991). The simulated dustfall rates due to the proposed project operations are provided in Section 4.2.2.2.

If more detailed information is required on the impact of particulate matter on vegetation and animals, it is recommended that the predicted PM concentrations and dust depositions be used in a more detailed biodiversity and/or health risk assessment study.

4.2.3 Mitigation Measures Recommended

Based on literature surveys, air pollution abatement measures were identified to be implemented at the main sources of fugitive dust. These mitigation measures are discussed in more detail in the following section.

4.2.3.1 Dust Control Options for Unpaved Roads

Vehicle entrainment could potentially be a significant source of particulate impact. Water sprays on unpaved roads is the most common means of suppressing fugitive dust due to vehicle entrainment at mines, but it is not necessarily the most efficient means (Thompson and Visser, 2000). Thompson and Visser (2000) developed a model to determine the cost and management implications of dust suppression on haul roads using water or other chemical palliatives. The study was undertaken at 10 mine sites in Southern Africa. The model was first developed looking at the re-application frequency of water required for maintaining a specific degree of dust palliation. From this the cost effectiveness of water spray

suppression could be determined and compared to other strategies. Factors accounted for in the model included climate, traffic, vehicle speed and the road aggregate material. A number of chemical palliative products, including hygroscopic salts, lignosulponates, petroleum resins, polymer emulsions and tar and bitumen products were assessed to benchmark their performance and identify appropriate management strategies. Cost elements taken into consideration included amongst others capital equipment, operation and maintenance costs, material costs and activity related costs. The main findings were that water-based spraying is the cheapest dust suppression option over the short term. Over the longer term however, the polymer-emulsion option is marginally cheaper with added benefits such as improved road surfaces during wet weather, reduced erosion and dry skid resistance (Thompson and Visser, 2000).

In the assessment of mitigated operations, proposed project activities were simulated assuming 75% control efficiency for vehicle entrainment.

4.2.3.2 Conveyors

The conveyors for the current operations were assessed with the top and one side covered. Although the simulated particulate impacts did not display exceedances of NAAQS within the study area, if not operating correctly could result in exceedances of the PM₁₀ and PM_{2.5} NAAQS at sensitive receptors along the conveyor route.

Windblown dust and particulate impacts can be reduced by 65% by covering a conveyor and placing a wall (windward side) on one side (GHD/Oceanics (1975) (as reported by Parrett, 1992)).

In the assessment of mitigated operations, existing operations were simulated assuming 65% control efficiency on the overland conveyor.

Dust management efforts are generally based on one or more approaches, with many operations using a combination of methods to achieve maximum effectiveness, as follows (NIOSH Mining Program Report of Investigations, 2019):

- Containing the material as it is transferred from one vessel or conveyor belt to another vessel or conveyor belt.
 - In order to effectively control material at transfer points, operators must ensure proper alignment, minimize vertical fall distance of the material, feed material to the center of the belt, and contain the transfer of material while minimizing transfer distance.
- Implementing design and methodologies that prevent airflow from becoming excessive.
 - Engineered flow chutes are designed to control the material in a tight stream and place it on the receiving belt with a minimum creation of air velocity. The hood maintains the material in a tight stream and glides it down to the spoon. The spoon continues the process of maintaining the tight stream and guiding the material onto the belt with a minimal drop while matching the speed and direction of the material.
- Containing and slowing the velocity of any air that is developed in the material transfer process.
 - Enclosures at the head end of the feeding conveyor and at the tail of the receiving conveyor are a common practice in that they are effective at controlling dust and eliminating sources of air entrainment at these locations. While the total elimination of dust generation at conveyor transfer points is probably not feasible, effective dust control is achievable. Designing the proper size enclosure with easily accessible covers is a critical factor because as ore is dumped onto the conveyor, it entrains a measurable amount of air (venturi effect) and thus can pressurize the enclosure. Enclosures for both conveyor and transfer points can be either full or partial, depending on the various components of the system.

- Implementing measures to increase the weight of the particles to prevent them from becoming airborne.
 - For belt discharge to the open air or where processes allow light material particles to accept some moisture, wet spray systems can be utilized to assist in controlling dust. Wet spray systems involve the application of water to control dust and may be classified into prevention applications and suppression applications.
- Removing dust particles that do become airborne by agglomerating them with moisture or by capturing them through a filter system.
 - In lieu of adding moisture to increase the weight of dust particles, air removal devices can be implemented in order to reduce the velocity of the air at the conveyor exit and scrub or filter the dust from the air. Dust bags, air cleaners, and/or dust collectors should be implemented when necessary to remove excess air from the conveyor system while capturing the dust particles.
- Cleaning the conveyor belt to ensure carry back material is returned to the material stream.
 - The primary means of controlling carryback is to clean the belt as it passes over or past the head pulley (i.e. shortly after material is discharged from the belt). The most common way to clean a conveyor belt of carryback is to mechanically "scrape" the belt via cleaners or brushes or to wash the belt.

4.2.3.3 Wind Erosion

A potentially significant impacting source may be wind erosion from the TSFs during periods of high winds (>9m/s). It is recommended that the sidewalls of the tailings dam be vegetated or rock cladded. The vegetation cover or rock cladding should be such to ensure at least 80% control efficiency. The top surface area should have 40% wet area (if feasible). Other control measures that may be implemented (depending on the practicality) is to introduce a water spraying system on the surface of the tailings dam covering the outer perimeter of the dam, spraying water when wind exceeds 4 m/s.

4.3 Decommissioning and Closure Phase

4.3.1 Identification of Environmental Aspects

It is assumed that all the operations will have ceased by the closure phase of the project. Aspects and activities associated with the decommissioning phase of the proposed operations are listed in Table 4-8. The same mitigation measures for construction phase can be implemented for the decommissioning phase. Simulations of the decommissioning and closure phases were not included in the current study due to its temporary impacting nature. For long-term rehabilitation, mitigation measures are provided in Section 4.3.2. Simulations of the decommissioning and closure phases were not included in the current study due to its temporary impacting and closure phases were not included in the current study due to its temporary impacting and closure phases were not included in the current study due to its temporary impacting and closure phases were not included in the current study due to its temporary impacting nature.

Table 4-8: Activities and aspects identified for the decommissioning phase

Impact	Source	Activity
Generation of PM _{2.5} and PM ₁₀	Offices and buildings	Demolition of the structure
Gas emissions	Vehicles	Tailpipe emissions from vehicles utilised during the closure phase

4.3.2 Mitigation Measures Recommended

Dust control measures for open areas can consist of wet suppression, chemical suppressants, vegetation, wind breaks, etc. Wet suppressants and chemical suppressants are generally applied for short storage pile durations. For long-term control measures vegetation frequently represents the most cost-effective and efficient control.

Vegetation cover retards erosion by binding the soil with a root network, by sheltering the soil surface and by trapping material already eroded. Sheltering occurs by reducing the wind velocity close to the surface, thus reducing the erosion potential and volume of material removed. The trapping of the material already removed by wind and in suspension in the air is an important secondary effect. Vegetation is also considered the most effective control measure in terms of its ability to also control water erosion. In investigating the feasibility of vegetation types, the following properties are normally taken into account: indigenous plants; ability to establish and regenerate quickly; proven effective for reclamation elsewhere; tolerant to the climatic conditions of the area; high rate of root production; easily propagated by seed or cuttings; and nitrogen-fixing ability. The long-term effectiveness of suitable vegetation selected for the site will be dependent on the nature of the cover.

5 SIGNIFICANCE RANKING

2014 EIA Regulations require that impacts be assessed in terms of the nature, significance, consequence, extent, duration and probability of the impacts including the degree to which these impacts can be reversed, may cause irreplaceable loss of resources, and can be avoided, managed or mitigated. The significance ranking methodology used in this report is provided in Appendix C.

The significance of the air quality impacts due to project activities are provided in Table 5-1.

Table 5-1: Significance ranking due to proposed project activities

Nature of the impact		Significance of potential impact <u>BEFORE</u> mitigation						Mitigation		Significance of potential impact <u>AFTER</u> n				
	Juor	Probability	Duration	Extent	Magnitude	Loss of Resources (%)	Sig	gnificance	Measures	Probability	Duration	Extent	Magnitude	Loss of
Pre-Construction Phase														
Site clearing of all footpri	int areas asso	ciated with the pr	roposed projec	t infrastruct	ture									
This phase will comprise a series of different operations including land clearing, topsoil removal, material loading and hauling, (etc.). Each of these operations has its own duration and potential for dust generation.									Wet suppression where feasible on stockpiles and materials handling activities Minimise extent of disturbed areas. Reduction of frequency of disturbance. Early re- vegetation Stabilisation (chemical, rock cladding or vegetative) of					
Stockpiling of Topsoil	-	3	2	2	6		30	Moderate	disturbed soil	2	2	1	4	
Windblown dust from stockpiled material and from dozing and compacting activities	- -	3	2	2	6		30	Moderate	Wet suppression where feasible on stockpiles. Early re- vegetation.	2	2	2	6	
Use of existing gravel roa	ads for pre-co	nstruction activit	les											
Vehicle entrainment from construction vehicles will have particulate impacts		3	2	2	6		30	Moderate	Water sprays on unpaved roads Minimise the haul routes Haul vehicles to be restricted to haul roads Control of vehicle speeds on haul roads to 40 km/hr	2	2	1	6	
Construction Phase			•								•	•		•
Construction of infrastruc	cture (DMS Pla	ant, DMS Stockpi	le area and as	sociated PCI	Ds, conveyor be	It systems, North and South	Shafts	, Ventilation s	hafts, staff accomm	nodation and exp	olosive destruc	ction bay)		
This phase will comprise a series of different operations including land clearing, topsoil removal, material loading and hauling, stockpiling, compacting, grading(etc.). These activities will have dust impacts.	_	4	2	2	6		40	Moderate	Wet suppression where feasible on stockpiles and materials handling activities Minimise extent of disturbed areas. Reduction of frequency of disturbance. Early re- vegetation Stabilisation	2	2	1	6	

Air Quality Impact Assessment for the Der Brochen Expansion Project

Nature of the impact			Się	gnificance of	f potential impac	t <u>BEFORE</u> mitigation			Mitigation		Degree of mitigation $(%)$						
	μασι	Probability	Duration	Extent	Magnitude	Loss of Resources (%)	Sigr	nificance	Measures	Probability	Duration	Extent	Magnitude	Loss of Resources (%)	(%) Significance		
									(chemical, rock cladding or vegetative) of disturbed soil								
Construction of gravel ma	aintenance roa	ads to the propos	sed ventilation	shafts	<u> </u>												
This phase will comprise of land clearing, compacting and grading. These activities will have dust impacts.	-	3	2	2	6		30	Moderate	Wet suppression where feasible	2	2	1	4		14	Low	53.3
Upgrading of existing gra	avel roads to t	ar roads to serve	as main acces	ss roads												•	
Grading of the existing haul road to prepare the surface for tar will give rise to dust impacts.	_	3	2	2	4		24	Low	Wet suppression where feasible	1	2	1	4		7	Low	70.8
Operational Phase	1 -	5	<u> </u>		- T		24	LOW		1	2		T		,	LOW	10.0
Underground mechanised	d mining at No	orth and South Sh	nafts														
Gaseous emissions from ventilation shafts	_	4	4	1	4		36	Moderate	If ambient concentrations exceed NAAQS, the stack heights and exit velocities can be increased to increase the dispersion potential of the gasses emitted.	4	4	1	2		28	Low	22.2
Temporary hauling of ore	e from shafts t	o Mototolo Conce	entrator along	the corridor	associated with	the Ore Conveyor System ((whilst co	onveyor syste	m is being constru	icted)							
Vehicle entrainment from haul trucks will have particulate impacts	-	4	4	1	6		44	Moderate	Wet suppression on unpaved road surfaces.	4	4	1	2	1	28	Low	36.4
Operation of Conveyor Sy	ystems		1		1												
Windblown dust from conveyor	-	4	4	1	6		44	Moderate	Covering the conveyor on the top and one side	4	4	1	2	1	28	Low	36.4
Stockpiling of ore materia	al at Mototolo	Concentrator	1	T	1	1					1						
Windblown dust form stockpiled material	-	3	4	1	2		21	Low	Wet suppression where feasible	2	4	1	2	1	14	Low	33.3
Operation of the Chrome	Recovery Inte	r-Stage Plant	1	1													
plant will be a wet process. There will be no air emissions due to this activity.																	

Nature of the impact		Significance of potential impact <u>BEFORE</u> mitigation									Degree of mitigation (%)							
Nature of the hit	Jaci	Probability	Duration	Extent	Magnitude	Loss of Resources (%)	Sig	gnificance	Measures	Probability	Duration	Extent	Magnitude	Loss of Resources (%)	Signif	icance	Degree of miligation (%)	
Operation of the DMS Pla	nt			•	•				•									
The DMS plant will be a wet process. There will be no air emissions due to this activity.																		
Deposition of DMS mater	ial onto the DI	MS Stockpile Are	a						1									
Material handling activities may result in									Wet suppression									
dust impacts Utilisation of storm water	- management	2 infrastructure at	4 t shafts. and P	1 CD's at DMS	stockpile		14	Low	where feasible	2	4	1	2		14	Low	0.0	
This activity would not	g								1									
have air quality impacts																		
Utilisation of the Staff Ac	commodation	near the Der Bro	ochen Dam															
This activity would not have air quality impacts																		
Utilisation of tar access re	oads	ł	1	•	•				•		ł							
Vehicle entrainment will have particulate impacts		_							Ensure the tar road is maintained and potholes are				_					
Itilisation of gravel main	- tenance roads	2	4	2 2 shafts	4		20	Low	fixed.	2	4	1	2		14	Low	30.0	
Vehicle entrainment will								1	Wet									
have particulate impacts	-	2	4	1	4		18	Low	suppression where feasible	2	4	1	2		14	Low	22.2	
Dangerous Goods storag	e (including h	ydrocarbons/che	emicals/explos	ives)														
Storage of chemicals may lead to minor gaseous emissions from the storage containers	-	2	4	1	2		14	Low	No specific mitigation provided	2	4	1	2		14	Low	0.0	
Waste Management				1 -	1 –	1			•	<u> </u>								
Gaseous emissions	-	3	4	1	4		27	Low	The specific mitigation will depend on the type of waste management employed	2	4	1	4		18	Low	33.3	
Decommissioning and Re	ehabilitation P	hase																
Removal of all plant equi	pment includii	ng conveyor belt	systems and	staff accom	nodation				_		-					_		
Demolition of building and equipment structure will give rise to dust impacts.		2		2	6		20	Moderate	Wet suppression where feasible on materials handling activities Reduction of frequency of disturbance. Early re- unactotics	2		4	4		34		20.0	
Rehabilitation of the DMS	Stockpile and	d PCD				1	00	moderate	Vogotation			<u> </u>	Ŧ			201	00.0	

Nature of the impact			Si	gnificance o	f potential impac	t <u>BEFORE</u> mitigation			Mitigation	Significance of potential impact <u>AFTER</u> mitigation							Degree of mitigation (%)
		Probability	Duration	Extent	Magnitude	Loss of Resources (%)	Significance		Measures	Probability	ty Duration Extent M		Magnitude	Loss of Resources (%)	Significance		
Material handling activities due to the placement of topsoil on the DMS stockpile, and grading activities would result in dust impacts.	underground	3 workings	2	3	6		33	Moderate	Wet suppression where feasible on materials handling activities Early re- vegetation	3	2	1	4		21	Low	36.4
Material handling and vehicle activity would result in dust impacts.	_	3	2	3	6		33	Moderate	Wet suppression where feasible on materials handling activities Early re- vegetation	3	2	1	4		21	Low	36.4

6 DUST MANAGEMENT PLAN

An air quality impact assessment was conducted for the project operations. The main objective of this study was to determine the significance of the predicted impacts from the proposed operations on the surrounding environment and on human health.

6.1 Site Specific Management Objectives

The main objective of Air Quality Management measures for the proposed project is to ensure that all operations are within ambient air quality criteria. In order to define site specific management objectives, the main sources of pollution needed to be identified. Sources can be ranked based on source strengths (emissions) and impacts. Once the main sources have been identified, target control efficiencies for each source can be defined to ensure acceptable cumulative ground level concentrations.

Particulates were identified as the main pollutant of concern from the proposed project operations.

The ranking of sources serves to confirm or, where necessary revise, the current understanding of the significance of specific sources, and to evaluate the emission reduction potentials required for each. Sources of emissions for the proposed project may be ranked based on:

- emissions based on the comprehensive emissions inventory established for the operations, and,
- impacts based on the predicted dustfall levels and ambient inhalable and respirable particulate concentrations.

Source ranking based on emissions was undertaken for source groups reflecting proposed operations with no control measures. Ranking of uncontrolled sources provides an indication of the relative significance of each source. This also allows the assessment of the suitability of controls. Ranking according to emissions and impacts facilitates the identification of sources requiring further controls.

6.1.1 Ranking of Sources by Emissions

Quantified particulate emissions due to the proposed project operations are provided in Section 4.2.2.2. The emissions are divided into TSP, PM₁₀ and PM_{2.5} per operation category. The largest contribution of total particulate emissions due to proposed unmitigated operations is vehicle entrainment. Particulate emissions from windblown dust from the TSFs and the vents are also main contributing sources.

6.1.2 Ranking of Sources by Impact

In the assessment of the significance of the main source categories in terms of their impacts, reference is made to the inhalable particulate concentrations and dustfall results. NAAQS are applicable to the assessment of community exposures.

Prior to the analysis of these results, careful consideration should be given to the assumptions with regard to the temporal variations in emissions for the purpose of the dispersion modelling. Constant emissions were assumed for the vent. Windblown dust from the TSFs and overland conveyor, however, was calculated for each hour on the basis of wind speed and atmospheric stabilities occurring during that hour. Peaks in wind-blown emissions were therefore accounted for in the dispersion simulations.

From the impact assessment, the main sources of particulate ground level concentrations were from windblown dust from the TSFs, vehicle entrainment and the conveyor.

6.2 Project-Specific Management Measures

The proposed operations have been assessed during this study with all emissions quantified and dispersion simulations executed.

Given the potential dust impacts from operations and the likely cumulative impacts given the surrounding mining activities, it is considered "good practice" that dust control measures be implemented throughout the life of the project. It is recommended that the project proponent commit itself to dust management planning.

The main contributing sources of particulate emissions have been identified and quantified. Due to the focus of the current section on the project, the dust management plan will focus on the proposed sources.

6.2.1 Estimation of Dust Control Efficiencies

The main sources of fugitive dust emissions from the cumulative baseline and proposed project operations were identified to be:

- Vehicle entrainment (due to the temporary transport of ROM via trucks until the conveyor is operational)
- Overland conveyor
- Windblown dust from the Mareesburg TSF

Due to the close proximity of sensitive receptors to the project, it is recommended that the temporary haul road be watered providing a **75% control efficiency**, the conveyor be covered providing a **65% control efficiency**, and the sidewalls of the TSFs be rock cladded or vegetated and that 40% of the top surface on active TSFs be kept wet (if plausible).

6.2.2 Identification of Suitable Pollution Abatement Measures

Suitable abatement measures have been discussed in detail in Section 4.2.3.

6.2.3 **Performance Indicators**

Key performance indicators against which progress may be assessed form the basis for all effective environmental management practices. In the definition of key performance indicators careful attention is usually paid to ensure that progress towards their achievement is measurable, and that the targets set are achievable given available technology and experience.

Performance indicators are usually selected to reflect both the source of the emission directly and the impact on the receiving environment. Ensuring that no visible evidence of wind erosion exists represents an example of a source-based

indicator, whereas maintaining off-site dustfall levels to below 600 mg/m²/day represents an impact- or receptor-based performance indicator. The NAAQS for particulate matter and NDCR represents receptor-based objectives.

6.2.3.1 Specification of Source Based Performance Indicators

Source based performance indicators for proposed routine operations for the project would include the following:

- Dustfall immediately downwind of the TSFs to be < 1200 mg/m²/day and dustfall at sensitive receptors to be < 600 mg/m²/day.
- Temporary haul road: The dustfall in the immediate vicinity of the source should be <1 200 mg/m²/day and dustfall at sensitive receptors to be <600 mg/m²/day.
- Overland conveyor: The absence of visible dust plume at all transfer points and conveyor belt would be the best
 indicator of effective control equipment in place. In addition, the dustfall in the immediate vicinity of the source
 should be <1 200 mg/m²/day and dustfall at sensitive receptors to be <600 mg/m²/day.

6.2.3.2 Receptor Based Performance Indicators

Dustfall Network

Der Brochen operate a dust fallout network of nine single dust buckets. It is recommended that sampling at these sites be continued throughout project operations.

Monitoring Strategy Criteria	Dustfall Monitoring
Monitoring objectives	- Assessment of compliance with dustfall limits within the main impact zone of the operation.
	- Facilitate the measurement of progress against environmental targets within the main impact zone of the operation.
	- Temporal trend analysis to determine the potential for nuisance impacts within the main impact zone of the operation.
	- Tracking of progress due to pollution control measure implementation within the main impact zone of the operation.
	- Informing the public of the extent of localised dust nuisance impacts occurring in the vicinity of the mine operations.
Monitoring location(s)	Current monitoring network locations
Sampling techniques	Single Bucket Dust Fallout Monitors
	Dust fallout sampling measures the fallout of windblown settle able dust. Single bucket fallout monitors to be deployed following the American Society for Testing and Materials standard method for collection and analysis of dustfall (ASTM D1739). This method employs a simple device consisting of a cylindrical container exposed for one calendar month (30 days, ±2 days).
Accuracy of sampling technique	Margin of accuracy given as $\pm 200 \text{ mg/m}^2/\text{day}$.
Sampling frequency and duration	On-going, continuous monitoring to be implemented facilitating data collection over 1-month averaging period.
Commitment to Quality Assessment/ Quality Control (QA/QC) protocol	Comprehensive QA/QC protocol implemented.
Interim environmental targets (i.e. receptor-based performance indicator)	Maximum total daily dustfall (calculated from total monthly dustfall) of not greater than 600 mg/m ² /day for residential areas. Maximum total daily dustfall to be less than 1 200 mg/m ² /day on-site (non-residential areas).

Table 6-1: Ambient air monitoring, performance assessment and reporting programme
Monitoring Strategy Criteria	Dustfall Monitoring
Frequency of reviewing environmental targets	Annually (or may be triggered by changes in air quality regulations).
Action to be taken if targets are not met	(i) Source contribution quantification.
	(ii) Review of current control measures for significant sources (implementation of contingency measures where applicable).
Procedure to be followed in reviewing environmental targets and other elements of the monitoring strategy (e.g. sampling technique, duration, procedure)	Procedure to be drafted in liaison with I&APs through the proposed community liaison forum. Points to be taken into account will include, for example: (i) trends in local and international ambient particulate guidelines and standards and/or compliance monitoring requirements, (ii) best practice with regard to monitoring methods, (iii) current trends in local air quality, i.e. is there an improvement or deterioration, (iv) future development plans within the airshed (etc.)
Progress reporting	At least annually to the necessary authorities and community forum.

Site Selection

Various factors can severely affect the validity of data from a monitoring site. The following issues should be thoroughly considered before selecting a site.

- <u>Sites with restricted air flows in the vicinity of the monitor</u>: Sites should not be adjacent to walls, buildings or trees that impede or distort the air flow. In general, the site should be in an open area, free of structures higher than 1 m within a 20 m radius of the container stand.
- <u>Obstacles between source to be monitored and monitor itself</u>: In addition, if the monitor is to measure the effects from a specific operation, there should not be tall trees, buildings, etc. between the monitor and the source of impact.
- 3) Sources of pollution that affect the sampler: The site should be away from local sources of pollution and objects that could affect the settling of particulate matter, such as trees, and air exhausts and intakes. This also applies to bird nests in the sampling structure or stands which should be kept clear of any debris.
- 4) <u>Security:</u> Accessibility and security from vandalism are major considerations in the selection of a site.

PM₁₀ Sampling

It is recommended that two PM₁₀ sampling campaigns of 12 months be undertaken (to obtain daily PM₁₀ concentration averages) prior to proposed operations (to understand the baseline PM₁₀ concentrations) and once the proposed operations with conveyor activities commence to ensure that NAAQS are being met (or at least not significantly altered from baseline conditions). The PM₁₀ sampling can be undertaken by inexpensive sampling equipment such as a MiniVol or EBam or more expensive equipment such as a TEOM.

It is recommended that the placement of the PM_{10} sampler be co-located with a close sensitive receptor downwind of the project (i.e. to the northwest of the Mareesburg TSF) to understand the operations impacts on surrounding sensitive receptors. If this is not possible due to security reasons, then the PM_{10} sampling should not be undertaken as placement inside the mining boundary will not meet the same objective.

6.2.4 Record-keeping, Environmental Reporting and Community Liaison

6.2.4.1 **Periodic Inspections and Audits**

Periodic inspections and external audits are essential for progress measurement, evaluation and reporting purposes. It is recommended that site inspections and progress reporting be undertaken at regular intervals (at least quarterly) during rehabilitation, with annual environmental audits being conducted. Annual environmental audits should be continued at least until closure. Results from site inspections and monitoring efforts should be combined to determine progress against sourceand receptor-based performance indicators. Progress should be reported to all interested and affected parties, including authorities and persons affected by pollution.

The criteria to be taken into account in the inspections and audits must be made transparent by way of minimum requirement checklists included in the Environmental Management Plan.

Corrective action or the implementation of contingency measures must be proposed to the stakeholder forum in the event that progress towards targets is indicated by the quarterly/annual reviews to be unsatisfactory.

6.2.4.2 Liaison Strategy for Communication with Interested and Affected Parties (I&APs)

Stakeholder forums provide possibly the most effective mechanisms for information dissemination and consultation. EMPs should stipulate specific intervals at which forums will be held, and provide information on how people will be notified of such meetings. For operations for which un-rehabilitated or party rehabilitated impoundments are located in close proximity (within 3 km) from residential areas, it is recommended that such meetings be scheduled and held at least on a bi-annual basis.

6.2.4.3 Financial Provision (Budget)

The budget should provide a clear indication of the capital and annual maintenance costs associated with dust control measures and dust monitoring plans. It may be necessary to make assumptions about the duration of aftercare prior to obtaining closure. This assumption must be made explicit so that the financial plan can be assessed within this framework. Costs related to inspections, audits, environmental reporting and interested and affected parties (I&AP) liaison should also be indicated where applicable. Provision should also be made for capital and running costs associated with dust control contingency measures and for security measures.

The financial plan should be audited by an independent consultant, with reviews conducted on an annual basis.

The costs to implement mitigation measures will be dependent on the solutions selected and the engineering designs. A detailed cost can therefore not be provided in this assessment.

6.3 Summary of Dust Management Plan

Based on the evaluation of the proposed project, a summary of the air quality management objectives is provided in Table 6-2.

No.	Mitigation Measures	Phase	Timeframe	Responsible party for implementation	Monitoring Party (frequency)	Target	Performance Indicators (Monitoring Tool)
			Overl	and Conveyor			
А	Due to the proximity of sensitive receptors to the project and the potential for cumulative impacts due to other mining activities in the study area, it is recommended that the conveyor is covered to reduce the impacts from this source by 65%.	Operational Phase	Duration of operations	Applicant Environmental Manager	Environmental Manager (Monthly)	Ensure compliance with NAAQS and NDCR.	The ambient air quality is within NAAQS for PM ₁₀ and PM _{2.5} and that the dust fallout levels at residential areas are less than 600 mg/m²/day.
			Unpay	ved Haul Road	1	1	
А	Due to the proximity of sensitive receptors to the project and the potential for cumulative impacts due to other mining activities in the study area, it is recommended that the temporary unpaved haul road be watered to reduce the impacts from this source by 75%.	Operational Phase	Duration of operations	Applicant Environmental Manager	Environmental Manager (Monthly)	Ensure compliance with NAAQS and NDCR.	The ambient air quality is within NAAQS for PM ₁₀ and PM _{2.5} and that the dust fallout levels at residential areas are less than 600 mg/m²/day.
			·	TSFs	·		
A	Due to the proximity of sensitive receptors to the project and the potential for cumulative impacts due to other mining activities in the study area, it is recommended that windblown dust from the TSFs be minimised as far as possible. It is recommended that the sidewalls of the TSFs be vegetated. The vegetation cover should be such to ensure at least 80% control efficiency. The top surface area should have 40% wet area (if feasible). Other control measures that may be	Operational Phase	Duration of operations	Applicant Environmental Manager	Environmental Manager (Monthly)	Ensure compliance with NAAQS and NDCR.	The ambient air quality is within NAAQS for PM ₁₀ and PM _{2.5} and that the dust fallout levels at residential areas are less than 600 mg/m²/day.

Table 6-2: Air Quality Management Plan for the proposed project operations

Air Quality Impact Assessment for the Der Brochen Expansion Project

No.	Mitigation Measures	Phase	Timeframe	Responsible party for implementation	Monitoring Party (frequency)	Target	Performance Indicators (Monitoring Tool)
	implemented (depending on the practicality) is to introduce a water spraying system on the surface of the tailings dam covering the outer perimeter of the dam, spraying water when wind exceeds 4 m/s.						
			Ambie	ent Monitoring			
A	It is recommended that the current dust fallout network be continued. Dust fallout rates to be below 1200 mg/m ² /day in non-residential areas and 600 mg/m ² /day in residential areas, averaged over 30 days.	Operational Phase	Duration of operations	Applicant Environmental Manager	Environmental Manager (Monthly)	Ensure compliance with NDCR.	Nine single dust fallout buckets.
В	Two PM ₁₀ sampling campaigns are recommended at the closest sensitive receptor downwind of the Mareesburg TSF (northwest of the active TSF) prior to proposed operations to understand baseline levels and once proposed mitigated conveyor operations take place in order to ensure the impacts from the project are kept to a minimum at sensitive receptors.	Operational Phase	Duration of operations	Applicant Environmental Manager	Environmental Manager (Monthly)	Ensure compliance with NAAQS at the closest sensitive receptors.	PM ₁₀ sampler.

7 FINDINGS AND RECOMMENDATIONS

7.1 Findings

An air quality impact assessment was conducted for the project operations. The main objective of this study was to determine the significance of the predicted impacts from the project operations on the surrounding environment and on human health. Emission rates were quantified for the project activities and dispersion modelling executed.

The main findings from the baseline assessment were as follows:

- The flow field is dominated by winds from the south-easterly sectors. During day-time conditions, winds from the north increase in frequency, with winds from the south-easterly sector increasing at night.
- The closest residential developments to the proposed project consist of Ga-Masha (~10 km northwest). Individual farmsteads also surround the Der Brochen mine area.
- Measured dust fallout at Der Brochen is below the NDCR for non-residential areas (1 200 mg/m²/day) and residential areas (600 mg/m²/day) for the period April 2017 to November 2018.

The main findings from the impact assessment due to project operations were as follows:

- Windblown dust from the TSFs, vehicle entrainment from the temporary haul road and conveyor activities represented the highest impacting particulate sources from the proposed project operations.
- The highest PM_{2.5} and PM₁₀ concentrations due to proposed project operations (unmitigated) were in compliance with NAAQS at the closest sensitive receptors for all scenarios. When activities were mitigated (assuming 75% control efficiency on vehicle entrainment for the temporary haul road and 65% control efficiency on the conveyor) the PM_{2.5} and PM₁₀ concentrations reduced notably in magnitude and spatial distribution.
- Maximum daily dust deposition was within with the NDCR for residential areas at the closest sensitive receptors for all modelled scenarios.

7.2 Recommendations

It is of the authors opinion that the project be authorised provided that the following recommendations are followed:

- It is recommended that dust fallout sampling, as per the current dust fallout network, continue in order to monitor the impacts from the proposed project activities.
- Due to the close proximity of sensitive receptors to the proposed project activities and the potential for cumulative impacts due to surrounding mining activities, it is recommended that mitigation measures on the main sources of fugitive dust (as recommended in Table 6-2) be implemented to minimise impacts as far as possible.

8 **REFERENCES**

- Abbey, D., Ostro, B., & F, P. (1995). Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. *J Expo Anal Environ Epidemiol* 5, 137–159.
- Alade, O. L. (2009). Characteristics of particulate matter over the South African industrialised Highveld. MSc dissertation. Faculty of Science, University of the Witwatersrand.
- Andreae, M., Atlas, E., Cachier, H., Cofer, W., Harris, G., Helas, G., . . . Ward, D. (1996). Trace gas and aerosol emissions from savanna fires. In J. Levine, *Biomass Burning and Global Change*. Cambridge: MIT Press.
- CEPA/FPAC Working Group. (1998). National Ambient Air Quality Objectives for Particulate Matter. Part 1: Science Assessment Document. A Report by the Canadian Environmental Protection Agency (CEPA) Federal-Provincial Advisory Committee (FPAC) on Air Quality Objectives and Guidelines.
- CERC. (2004). ADMS Urban Training. Version 2. Unit A.
- Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate Matter and Human Health: A Review. *Aerosol Science and Technology , Volume 39, Issue 8.*
- DEA. (2009, Dec 24). National Ambient Air Quality Standards. Department of Environmental Affairs, Government Gazette No. 32816, 24 December 2009.
- DEA. (2011, August 5). National dust control regulations. Gazette No. 34493.
- DEA. (2012, June 29). National Ambient Air Quality Standard for Particulate Matter with Aerodynamic Diameter less than 2.5 micron metres (PM2.5). Department of Environmental Affairs, Government Gazette No. 35463, 29 June 2012.
- DEA. (2013). Regulations Prescribing Format of Atmospheric Impact Report. Department of Environmental Affairs, Government Gazette No. 36904, 11 October 2013.
- DEA. (2014). *Regulations regarding Air Dispersion Modelling*. Department of Environmental Affairs, Government Gazette No. 37804, 11 July 2014.
- Dockery, D., & Pope, C. (1994). Acute Respiratory Effects of Particulate Air Pollution. 15.
- Ernst, W. (1981). Monitoring of particulate pollutants. In L. Steubing, & H.-J. Jager, *Monitoring of Air Pollutants by Plants: Methods and Problems.* The Hague: Dr W Junk Publishers.
- Farmer, A. M. (1991). The Effects of dust on vegetation-A review. Enviromental Pollution, 79: 63-75.

Garstang, M., Tyson, P., Swap, R., & Edwards, M. (1996). Horizontal and vertical transport of air over southern Africa.

- Goldreich, Y., & Tyson, P. (1988). Diurnal and Inter-Diurnal Variations in Large-Scale Atmospheric Turbulence over Southern Africa. South African Geographical Journal, 48-56.
- Grantz, D. A., Garner, J. H., & Johnson, D. W. (2003). Ecological effects of particulate matter. Env. Int, 29 pp 213-239.
- Hanna, S. R., Egan, B. A., Purdum, J., & Wagler, J. (1999). Evaluation of ISC3, AERMOD, and ADMS Dispersion Models with Observations from Five Field Sites.
- Harmens, H., Mills, G., Hayes, F., Williams, P., & De Temmerman, L. (2005). *Air Pollution and Vegetation.* The International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops Annual Report 2004/2005.
- Hirano, T., Kiyota, M., & Aiga, I. (1995). Physical effects of dust on leaf physiology of cucumber and kidney bean plants. *Environmental Pollution*, 255–261.
- Holland, R. E., Carson, T. L., & Donham, K. L. (2002). Chapter 6.2: Animal Health Effects. In: Iowa concentrated animal feeding operations air quality study. Iowa State University. Retrieved 03 27, 2012, from http://www.deq.state.or.us/aq/dairy/docs/appendix/appendix_L.pdf#page=115
- Hruba, F., Fabianova, E., Koppova, K., & Vandenberg, J. (2001). Childhood respiratory symptoms, hospital admissions, and long-term exposure to airborne particulate matter. *Journal of Exposure Analysis and Environmental Epidemiology* 11, 33–40.
- IFC. (2007). General Environmental, Health and Safety Guidelines. World Bank Group.
- Keet, C., Keller, J., & Peng, R. (2017). Long-Term Coarse Particulate Matter Exposure Is Associated with Asthma among Children in Medicaid. *Am J Resp and Crit Care Med* 197, 737-746.
- Lim, S., & 209others. (2015). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet 2012*, 2224–2260.
- Makar, M., Antonelli, J., Di, Q., Cutler, D., Schwartz, J., & Dominici, F. (2017). Estimating the Causal Effect of Low Levels of Fine Particulate Matter on Hospitalization. *Epidemiology*, 627-634.
- Marticorena, B., & Bergametti, G. (1995). Modelling the Atmospheric Dust Cycle 1 Design of a Soil-Derived Dust Emission Scheme. *Journal of Geophysical Research*, 100, 16415 - 16430.
- Naidoo, G., & Chirkoot, D. (2004). The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. *Environmental Pollution*, 359–366.
- Parrett, F. W. (1992). Dust Emissions a Review, Applied Environmetrics.
- Piketh, S., Annegarn, H., & Kneen, M. (1996). Regional scale impacts of biomass burning emissions over southern Africa. In J. Levine, *Biomass Burning and Global Change*. Cambridge: MIT Press.

- Rai, P. K. (2016). Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. *Ecotoxicology and Environmental Safety, Vol. 129*, 120–136.
- Ricks, G., & Williams, R. (1974). Effects of atmospheric pollution on deciduous woodland part 2: effects of particulate matter upon stomatal diffusion resistance in leaves of Quercus petraes (Mattuschka) Leibl. *Environmental Pollution*, 87– 109.
- Sneeringer, S. (2009). Does Animal Feeding Operation Pollution Hurt Public Health? A National Longitudinal Study of Health Externalities Identified by Geographic Shifts in Livestock Production. *American Journal of Agricultural Economics, Vol. 91, No. 1*, pp. 124-137.
- Spencer, S. (2001). Effects of coal dust on species composition of mosses and lichens in an arid environment. Arid Environments 49, 843-853.
- Thompson, R., & Visser, A. (2000). *Integrated Asset Management Strategies for Unpaved Mine Haul Roads.* University of Pretoria: Department of Mining Engineering.
- Tiwary, A., & Colls, J. (2010). Air Pollution: Measurement, Modelling and Mitigation.
- Turner, M., Krewski, D., Diver, W., Pope III, C., Burnett, R., Jerrett, M., . . . Gapstur, S. (2017). Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II . *Environ Health Persp* 125.

APPENDIX A - COMPREHENSIVE CURRICULUM VITAE OF THE AUTHOUR OF THE CURRENT ASSESSMENT

CURRICULUM VITAE

RENÉ VON GRUENEWALDT

FULL CURRICULUM VITAE

Name of Firm Name of Staff Profession Date of Birth Years with Firm Nationalities Airshed Planning Professionals (Pty) Ltd René von Gruenewaldt (*nee* Thomas) Air Quality Scientist 13 May 1978 More than 15 years South African

MEMBERSHIP OF PROFESSIONAL SOCIETIES

- Registered Professional Natural Scientist (Registration Number 400304/07) with the South African Council for Natural Scientific Professions (SACNASP)
- Member of the National Association for Clean Air (NACA)

KEY QUALIFICATIONS

René von Gruenewaldt (Air Quality Scientist): René joined Airshed Planning Professionals (Pty) Ltd (previously known as Environmental Management Services cc) in 2002. She has, as a Specialist, attained over fifteen (15) years of experience in the Earth and Natural Sciences sector in the field of Air Quality and three (3) years of experience in the field of noise assessments. As an environmental practitioner, she has provided solutions to both large-scale and smaller projects within the mining, minerals, and process industries.

She has developed technical and specialist skills in various modelling packages including the AMS/EPA Regulatory Models (AERMOD and AERMET), UK Gaussian plume model (ADMS), EPA Regulatory puff based model (CALPUFF and CALMET), puff based HAWK model and line based models. Her experience with emission models includes Tanks 4.0 (for the quantification of tank emissions), WATER9 (for the quantification of waste water treatment works) and GasSim (for the quantification of landfill emissions). Noise propagation modelling proficiency includes CONCAWE, South African National Standards (SANS 10210) for calculating and predicting road traffic noise.

Having worked on projects throughout Africa (i.e. South Africa, Mozambique, Malawi, Kenya, Angola, Democratic Republic of Congo, Namibia, Madagascar and Egypt) René has developed a broad experience base. She has a good understanding of the laws and regulations associated with ambient air quality and emission limits in South Africa and various other African countries, as well as the World Bank Guidelines, European Community Limits and World Health Organisation.

Curriculum Vitae: René von Gruenewaldt

RELEVANT EXPERIENCE

Mining and Ore Handling

René has undertaken numerous air quality impact assessments and management plans for coal, platinum, uranium, copper, cobalt, chromium, fluorspar, bauxite, manganese and mineral sands mines. These include: compilation of emissions databases for Landau and New Vaal coal collieries (SA), impact assessments and management plans for numerous mines over Mpumalanga (viz. Schoonoord, Belfast, Goedgevonden, Mbila, Evander South, Driefontein, Hartogshoop, Belfast, New Largo, Geluk, etc.), Mmamabula Coal Colliery (Botswana), Moatize Coal Colliery (Mozambique), Revuboe Coal Colliery (Mozambique), Toliera Sands Heavy Minerals Mine and Processing (Madagascar), Corridor Sands Heavy Minerals Mine monitoring assessment, El Burullus Heavy Minerals Mine and processing (Egypt), Namakwa Sands Heavy Minerals Mine (SA), Tenke Copper Mine and Processing Plant (DRC), Rössing Uranium (Namibia), Lonmin platinum mines including operations at Marikana, Baobab, Dwaalkop and Doornvlei (SA), Impala Platinum (SA), Pilannesburg Platinum (SA), Aquarius Platinum, Hoogland Platinum Mine (SA), Tamboti PGM Mine (SA), Naboom Chrome Mine (SA), Kinsenda Copper Mine (DRC), Kassinga Mine (Angola) and Nokeng Flourspar Mine (SA), etc.

Mining monitoring reviews have also been undertaken for Optimum Colliery's operations near Hendrina Power Station and Impunzi Coal Colliery with a detailed management plan undertaken for Morupule (Botswana) and Glencor (previously known as Xstrata Coal South Africa).

Air quality assessments have also been undertaken for mechanical appliances including the Durban Coal Terminal and Nacala Port (Mozambique) as well as rail transport assessments including BHP-Billiton Bauxite transport (Suriname), Nacala Rail Corridor (Mozambique and Malawi), Kusile Rail (SA) and WCL Rail (Liberia).

Metal Recovery

Air quality impact assessments have been carried out for Highveld Steel, Scaw Metals, Lonmin's Marikana Smelter operations, Saldanha Steel, Tata Steel, Afro Asia Steel and Exxaro's Manganese Pilot Plant Smelter (Pretoria).

Chemical Industry

Comprehensive air quality impact assessments have been completed for NCP (including Chloorkop Expansion Project, Contaminated soils recovery, C3 Project and the 200T Receiver Project), Revertex Chemicals (Durban), Stoppani Chromium Chemicals, Foskor (Richards Bay), Straits Chemicals (Coega), Tenke Acid Plant (DRC), and Omnia (Sasolburg).

Petrochemical Industry

Numerous air quality impact assessments have been completed for Sasol (including the postponement/exemption application for Synfuels, Infrachem, Natref, MIBK2 Project, Wax Project, GTL Project, re-commissioning of boilers at Sasol Sasolburg and Ekandustria), Engen Emission Inventory Functional Specification (Durban), Sapref refinery (Durban), Sasol (at Elrode) and Island View (in Durban) tanks quantification, Petro SA and Chevron (including the postponement/exemption application).

Curriculum Vitae: René von Gruenewaldt

Pulp and Paper Industry

Air quality studies have been undertaken or the expansion of Mondi Richards Bay, Multi-Boiler Project for Mondi Merebank (Durban), impact assessments for Sappi Stanger, Sappi Enstra (Springs), Sappi Ngodwana (Nelspruit) and Pulp United (Richards Bay).

Power Generation

Air quality impact assessments have been completed for numerous Eskom coal fired power station studies including the ash expansion projects at Kusile, Kendal, Hendrina, Kriel and Arnot; Fabric Filter Plants at Komati, Grootvlei, Tutuka, Lethabo and Kriel Power Stations; the proposed Kusile, Medupi (including the impact assessment for the Flue Gas Desulphurization) and Vaal South Power Stations. René was also involved and the cumulative assessment of the existing and return to service Eskom power stations assessment and the optimization of Eskom's ambient air quality monitoring network over the Highveld.

In addition to Eskom's coal fired power stations, various Eskom nuclear power supply projects have been completed including the air quality assessment of Pebble Bed Modular Reactor and nuclear plants at Duynefontein, Bantamsklip and Thyspunt.

Apart from Eskom projects, power station assessments have also been completed in Kenya (Rabai Power Station) and Namibia (Paratus Power Plant).

Waste Disposal

Air quality impact assessments, including odour and carcinogenic and non-carcinogenic pollutants were undertaken for the Waste Water Treatment Works in Magaliesburg, proposed Waterval Landfill (near Rustenburg), Tutuka Landfill, Mogale General Waste Landfill (adjacent to the Leipardsvlei Landfill), Cape Winelands District Municipality Landfill and the Tsoeneng Landfill (Lesotho). Air quality impact assessments have also been completed for the BCL incinerator (Cape Town), the Ergo Rubber Incinerator and the Ecorevert Pyrolysis Plant.

Cement Manufacturing

Impact assessments for ambient air quality have been completed for the Holcim Alternative Fuels Project (which included the assessment of the cement manufacturing plants at Ulco and Dudfield as well as a proposed blending platform in Roodepoort).

Management Plans

René undertook the quantification of the baseline air quality for the first declared Vaal Triangle Airshed Priority Area. This included the establishment of a comprehensive air pollution emissions inventory, atmospheric dispersion modelling, focusing on impact area "hotspots" and quantifying emission reduction strategies. The management plan was published in 2009 (Government Gazette 32263).

René has also been involved in the Provincial Air Quality Management Plan for the Limpopo Province.

Curriculum Vitae: René von Gruenewaldt

Other Experience (2001)

Research for B.Sc Honours degree was part of the "Highveld Boundary Layer Wind" research group and was based on the identification of faulty data from the Majuba Sodar. The project was THRIP funded and was a joint venture with the University of Pretoria, Eskom and Sasol (2001).

EDUCATION

M.Sc Earth Sciences	University of Pretoria, RSA, Cum Laude (2009) Title: An Air Quality Baseline Assessment for the Vaal Airshed in South Africa
B.Sc Hons. Earth Sciences	University of Pretoria, RSA, Cum Laude (2001) Environmental Management and Impact Assessments
B.Sc Earth Sciences	University of Pretoria, RSA, (2000) Atmospheric Sciences: Meteorology

ADDITIONAL COURSES

CALMET/CALPUFF	Presented by the University of Johannesburg, RSA (March 2008)
Air Quality Management	Presented by the University of Johannesburg, RSA (March 2006)
ARCINFO	GIMS, Course: Introduction to ARCINFO 7 (2001)

COUNTRIES OF WORK EXPERIENCE

South Africa, Mozambique, Malawi, Liberia, Kenya, Angola, Democratic Republic of Congo, Lesotho, Namibia, Madagascar, Egypt, Suriname and Iran.

Curriculum Vitae: René von Gruenewaldt

EMPLOYMENT RECORD

January 2002 - Present

Airshed Planning Professionals (Pty) Ltd, (previously known as Environmental Management Services cc until March 2003), Principal Air Quality Scientist, Midrand, South Africa.

2001

University of Pretoria, Demi for the Geography and Geoinformatics department and a research assistant for the Atmospheric Science department, Pretoria, South Africa.

Department of Environmental Affairs and Tourism, assisted in the editing of the Agenda 21 document for the world summit (July 2001), Pretoria, South Africa.

1999 - 2000

The South African Weather Services, vacation work in the research department, Pretoria, South Africa.

CONFERENCE AND WORKSHOP PRESENTATIONS AND PAPERS

- Understanding the Synoptic Systems that lead to Strong Easterly Wind Conditions and High Particulate Matter Concentrations on The West Coast of Namibia, H Liebenberg-Enslin, R von Gruenewaldt, H Rauntenbach and L Burger. National Association for Clean Air (NACA) conference, October 2017.
- Topographical Effects on Predicted Ground Level Concentrations using AERMOD, R.G. von Gruenewaldt. National Association for Clean Air (NACA) conference, October 2011.
- Emission Factor Performance Assessment for Blasting Operations, R.G. von Gruenewaldt. National Association for Clean Air (NACA) conference, October 2009.
- Vaal Triangle Priority Area Air Quality Management Plan Baseline Characterisation, R.G. Thomas, H Liebenberg-Enslin, N Walton and M van Nierop. National Association for Clean Air (NACA) conference, October 2007.
- A High-Resolution Diagnostic Wind Field Model for Mesoscale Air Pollution Forecasting, R.G. Thomas, L.W. Burger, and H Rautenbach. National Association for Clean Air (NACA) conference, September 2005.
- Emissions Based Management Tool for Mining Operations, R.G. Thomas and L.W. Burger. National Association for Clean Air (NACA) conference, October 2004.
- An Investigation into the Accuracy of the Majuba Sodar Mixing Layer Heights, R.G. Thomas. Highveld Boundary Layer Wind Conference, November 2002.

Curriculum Vitae: René von Gruenewaldt

LANGUAGES

	Speak	Read	Write
English	Excellent	Excellent	Excellent
Afrikaans	Fair	Good	Good

CERTIFICATION

I, the undersigned, certify that to the best of my knowledge and belief, these data correctly describe me, my qualifications, and my experience.

R5+40

Signature of staff member

22/11/2017

Date (Day / Month / Year)

Full name of staff member:

René Georgeinna von Gruenewaldt

Curriculum Vitae: René von Gruenewaldt

APPENDIX B - DECLARATION OF INDEPENDENCE

DECLARATION OF INDEPENDENCE - PRACTITIONER

Name of Practitioner: René von Gruenewaldt

Name of Registration Body: South African Council for Natural Scientific Professions

Professional Registration No.: 400304/07

Declaration of independence and accuracy of information provided:

Atmospheric Impact Report in terms of section 30 of the Act.

I, René von Gruenewaldt, declare that I am independent of the applicant. I have the necessary expertise to conduct the assessments required for the report and will perform the work relating the application in an objective manner, even if this results in views and findings that are not favourable to the applicant. I will disclose to the applicant and the air quality officer all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the air quality officer. The additional information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1)(g) of this Act.

Signed at Midrand on this 15th of April 2019

SIGNATURE

Principal Air Quality Scientist

CAPACITY OF SIGNATORY

APPENDIX C - ENVIRONMENTAL IMPACT ASSESSMENT SIGNIFICANCE RATING METHODOLOGY

The methodology used for assessing the significance of the impact was obtained from SRK.

EIA METHODOLOGY

The EIA Methodology will require that each potential impact identified is clearly described (providing the nature of the impact) and be assessed in terms of the following factors:

- extend (spatial scale) will the impact affect the national, regional or local environment, or only that of the site;
- duration (temporal scale) how long will the impact last;
- magnitude (severity) will the impact be of high, moderate or low severity; and
- probability (likelihood of occurring) how likely is it that the impact may occur.

To enable a scientific approach for the determination of the environmental significance (importance) of each identified potential impact, a numerical value has been linked to each factor. The following ranking scales are applicable:

	Duration:	Probability:	
irrence	5 – Permanent	5 – Definite/don't know	
	4 - Long-term (ceases with the operational life)	4 – Highly probable	
	3 - Medium-term (5-15 years)	3 – Medium probability	
CCL	2 - Short-term (0-5 years)	2 – Low probability	
0	1 – Immediate	1 – Improbable	
		0 – None	
	Extent/scale:	Magnitude:	
	5 – International	10 - Very high/uncertain	
ίζ	4 – National	8 – High	
Severi	3 – Regional	6 – Moderate	
	2 – Local	4 – Low	
	1 – Site only	2 – Minor	
	0 – None		

Once the above factors had been ranked for each identified potential impact, the environmental significance of each impact can be calculated using the following formula:

Significance = (duration + extend + magnitude) x probability

The maximum value that can be calculated for the environmental significance of any impact is 100.

The environmental significance of any identified potential impact is then rated as either: high, moderate or low on the following basis:

- More than 60 significance value indicates a high (H) environmental significance impact;
- Between 30 and 60 significance value indicates a moderate (M) environmental significance impact; and
- Less than 30 significance value indicates a low (L) environmental significance impact.

In order to assess the degree to which the potential impact can be reversed and be mitigated, each identified potential impact will need to be assessed twice.

- 1. Firstly, the potential impact will be assessed and rated prior to implementing any mitigation and management measures; and
- 2. Secondly, the potential impact will be assessed and rated after the proposed mitigation and management measures have been implemented.

The purpose of this dual rating of the impact before and after mitigation is to indicate that the significance rating of the initial impact is and should be higher in relation to the significance of the impact after mitigation measures have been implemented.

In order to assess the degree to which the potential impact can cause irreplaceable loss of resources, the following classes (%) will be used and will need to be selected based on your informed decision and discression:

- 5 100% Permanent loss
- 4 75% 99% significant loss
- 3 50% 74% moderate loss
- 2 25% 49% minor loss
- 1 0% 24% limited loss

Please note that the Loss of Resources aspect will not affect the overall significance rating of the impact.

In terms of assessing the cumulative impacts, specialists are required to address this in a sentence/paragraph fashion as the spatial extent of the cumulative impacts will vary from project to project.

Cumulative impact, in relation to an activity, means the impact of an activity that in itself may not be significant, but may become significant when added to the existing or potential impacts eventuating from similar or diverse activities or undertakings in the area.