Sasol South Africa

Secunda Synfuels Operations

AEL No: Govan Mbeki Sasol Chemical Industries (Pty) Ltd 0016/2015/F02

Annual Emission Report

Prepared for

Gert Sibande District Municipality

31 August 2016

Reporting period: July 2015 – June 2016

Date of submission: 31 August 2016

TABLE OF CONTENTS

1.	INTRODUCTION	
2.	SERVICE PROVIDERS	
3.	RESULTS4	
3	3.1 EMISSIONS TESTING RESULTS	. 4
4.	EMISSION TRENDS	
5.	COMPLIANCE AUDIT REPORTS	
6.	MAJOR UPGRADE PROJECTS	
7.	GREENHOUSE GAS EMISSIONS	
8.	PUBLIC CONSULTATION FORUM	
9. <i>A</i>	ACTIONS TAKEN ON COMPLAINTS RECEIVED	
	HIGHVELD PRIORITY AIR QUALITY MANAGEMENT PLAN AND OFFSE	ΞT
Anr	nexure 1	
Anr	nexure 221	

1. INTRODUCTION

Emission monitoring was conducted by various independent service providers. Section 3 of this document summarises the emissions measured compared to the maximum emission rates as per the Atmospheric Emission License.

2. SERVICE PROVIDERS

SGS South Africa, Levego, Future Projects and Kentz are the independent parties who did the necessary emission testing. Their contact details are shown in table 2.1.1 to 2.1.4 below.

Table 2.1.1: Levego Contact details

abie zi i i i ze rege ee inaet actaile								
	Building R6, Pinelands Site							
Physical address	Ardeer Road, Modderfontein							
	1645							
	PO Box 422,							
Postal address	Modderfontein							
	1645							
Telephone No:	+27 11 608 4148							
Fax No	+27 011 608 2621							
Email	info@levego.co.za							

Table 2.1.2: SGS Contact details

able 2.1.2. 000 contact details	bic Ei i E. 666 Contact details						
	58 Mellville Street, Booysens						
Physical address	Johannesburg, 2135						
	South Africa						
	P.O. Box 82582, Southdale						
Postal address	Johannesburg, 2135						
	South Africa						
Telephone No:	+27 11 681 2500						
Fax No	+27 11 433 365						
Email	envi.africa@sgs.com						

Table 2.1.3: Future Projects Contact details

Physical address	480 Smuts Drive, Halfway Gardens, Midrand, Gauteng, 1685 South Africa.
Telephone No:	+27 11 052 1250
Email	info@futureprojects.co.za

Table 2.1.4: Kentz Contact details

Dh. siaal adda.aa	Secunda
Physical address	South Africa
	P.O. Box
Postal address	Johannesburg,
	South Africa
Telephone No:	+27 631 3080
Email	Breyten.Groenewald@snclavalin.com

3. RESULTS

EMISSIONS TESTING RESULTS 3.1

Table 3.1: Summarised sampling results for SSO: Steam Plant (sub-category 1.1), Gas Turbine (sub-category 1.4) and Rectisol (sub-category 3.6)

Point source code Pollutant PM			Measured concentration: daily average	Reference AEL limit (mg/Nm³)		
Point source code B1 (U43) Main stack west B2 (U243) Main stack east GT1 GT2 Rectisol East (off gas to main stack)	PM		See figure 1 for online PM data	120 mg/Nm ³ at 10 % O ₂		
B1 (U43) Main stack west B2 (U243) Main stack east GT1 GT2 Rectisol East (off	NOx expresse	ed as NO ₂	Measurements could not be taken	1100 mg/Nm ³ at 10 % O ₂		
	SO ₂		the stack. Emission sampling is planned for November 2016	3500 mg/Nm³ at 10 % O ₂		
Point source code B1 (U43) Main stack west B2 (U243) Main stack east GT1 GT2 Rectisol East (off	PM		See figure 2 for online PM data	120 mg/Nm³ at 10 % O ₂		
	NOx expresse	ed as NO ₂	See figure 3 for online NO _x data	1100 mg/Nm³ at 10 % O ₂		
	SO ₂		See figure 4 for online SO ₂ data	for online PM data s could not be taken lacement of the lift in mission sampling is r November 2016 If or online PM data for online PM data for online PM data for online PM data for online NO _x data for online SO ₂ data for online SO ₂ data 1100 mg/Nm³ at 10 % O ₂ 1 10 mg/Nm³ at 10 % O ₂ 1 10 mg/Nm³ at 10 % O ₂ 2 300 mg/Nm³ at 15 % O ₂ 300 mg/Nm³ at 15 % O ₂ 300 mg/Nm³ at 15 % O ₂ 2 10 mg/Nm³ at 15 % O ₂ 300 mg/Nm³ at 15 % O ₂ 300 mg/Nm³ at 15 % O ₂ 31.5 t/h max daily average during upset conditions 124 300 mg/Nm³ 164 3500 mg/Nm³ 26 300 mg/Nm³ 17 3500 mg/Nm³ 18 3500 mg/Nm³ 19 3500 mg/Nm³ 11 3500 mg/Nm³ 12 3500 mg/Nm³ 13.5 t/h max daily average during upset conditions 300 mg/Nm³ 300 mg/Nm³ 3500 mg/Nm³		
B1 (U43) Main stack west SO2 B2 (U243) Main Stack east PM NOx e SO2 GT1 NOx e SO2 PM NOx e SO2 PM NOx e SO2 PM Quarte Rectisol East (off gas to main stack) Quarte Quarte Quarte Quarte Quarte Quarte	PM		1	10 mg/Nm ³ at 15 % O ₂		
Point source code B1 (U43) Main stack west B2 (U243) Main stack east GT1 GT2 Rectisol East (off gas to main stack)	NOx expresse	ed as NO ₂	62.2	300 mg/Nm ³ at 15 % O ₂		
	SO ₂		<3	500 mg/Nm ³ at 15 % O ₂		
	PM		2	10 mg/Nm ³ at 15 % O ₂		
GT2	Pollutant PM NOx expressed as SO2 PM Quarter 1 Quarter 2 Quarter 3 Quarter 4 Quarter 2 Quarter 1 Quarter 2 Quarter 3 Quarter 3 Quarter 4 Quarter 3 Quarter 4 Quarter 3 Quarter 4	ed as NO ₂	46	300 mg/Nm ³ at 15 % O ₂		
	SO ₂		<3	500 mg/Nm ³ at 15 % O ₂		
	H ₂ S (measured as S)		See figure 5 & 6	upset conditions 8400 mg/Nm³ normal operating		
	Ouartor 1	VOCs	124	300 mg/Nm ³		
	Quarter	SO ₂	164	3500 mg/Nm ³		
	Quarter 2	Total VOCs	26	300 mg/Nm ³		
gas to main stack)	Quarter 2	SO ₂	59	3500 mg/Nm ³		
	Quarter 2	VOCs	43	300 mg/Nm ³		
	Quarter 3	SO ₂	11	3500 mg/Nm ³		
	Overten 4	VOCs	58	300 mg/Nm ³		
	Quarter 4	SO ₂	<3	3500 mg/Nm ³		
	H ₂ S (measured as S)		See figure 5 & 6	upset conditions 8400 mg/Nm³ normal operating		
	0 . 1 . 1	VOCs	216	300 mg/Nm ³		
	Quarter 1	SO ₂	<3	3500 mg/Nm ³		
	0 . 1 . 0	VOCs	95	300 mg/Nm ³		
gas to main stack)	Quarter 2	SO ₂	5	3500 mg/Nm ³		
	0 1 0	VOCs	117	300 mg/Nm ³		
	Quarter 3	SO ₂	<3	3500 mg/Nm ³		
	0 1 1	VOCs	54	300 mg/Nm ³		
	Quarter 4	SO ₂	5	3500 mg/Nm ³		

Table 3.2: Summarised sampling results for SSO: Catalyst Manufacturing (sub-category 4.2 and

4.7) and Heaters (sub-category 2.1)

Point source code	Pollutant	Measured concentration: daily average	Reference AEL limit (mg/Nm³)		
•	PM	4	100 mg/Nm ³		
	NOx expressed as NO ₂	119	500 mg/Nm ³		
(West Rill stack)	SO ₂	113	2000 mg/Nm ³		
	PM	4	(mg/Nm³) 100 mg/Nm³ 500 mg/Nm³ 2000 mg/Nm³ 100 mg/Nm³ 500 mg/Nm³ 500 mg/Nm³ 100 mg/Nm³ 500 mg/Nm³ 500 mg/Nm³ 100 mg/Nm³ 500 mg/Nm³ 100		
Point source code CM1 (West Kiln stack) CM2 (West Arc Furnace Stack) CM3 (East Kiln A Stack) CM4 (East Arc Furnace Stack) CM5 (East Kiln B Stack) R1 (14HT101)* R2(14HT201)* R3(214HT101)* R4(214HT201)*	NOx expressed as NO ₂	36	500 mg/Nm ³		
r diridoc Otdok)	SO ₂	<3	daily average 4 100 mg/Nm³ 119 500 mg/Nm³ 113 2000 mg/Nm³ 4 100 mg/Nm³ 4 100 mg/Nm³ 36 500 mg/Nm³		
PM CM1 (West Kiln stack) PM CM2 (West Arc Furnace Stack) Furnace Stack) PM CM3 (East Kiln A Stack) NOx expr SO2 PM CM4 (East Arc Furnace Stack) PM CM5 (East Kiln B Stack) SO2 R1 (14HT101)* NOx expr SO2 NOx expr R2(14HT201)* NOx expr SO2 NOx expr R4(214HT201)* NOx expr SO2 NOx expr R5(228HT101)* NOx expr SO2 NOx expr R6 (30HT101)* NOx expr SO2 NOx expr	PM		100 mg/Nm ³		
	NOx expressed as NO ₂		500 mg/Nm ³		
Stack)	SO ₂	be submitted to the authorities once	2000 mg/Nm ³		
	PM		100 mg/Nm ³		
Point source code CM1 (West Kiln stack) CM2 (West Arc Furnace Stack) CM3 (East Kiln A Stack) CM4 (East Arc Furnace Stack) CM5 (East Kiln B Stack) R1 (14HT101)* R2(14HT201)* R3(214HT101)* R4(214HT201)* R5(228HT101)* R6 (30HT101)*	NOx expressed as NO ₂		500 mg/Nm ³		
	SO ₂	_ ·	500 mg/Nm ³		
	PM		100 mg/Nm ³		
	NOx expressed as NO ₂		500 mg/Nm ³		
	SO ₂	done once the kiln is back in operation. Results will be submitted once available in monthly emissions	2000 mg/Nm ³		
D1 /1/UT101*	NOx expressed as NO ₂	146	1700 mg/Nm³ at 10 % O ₂		
CM1 (West Kiln stack) CM2 (West Arc Furnace Stack) CM3 (East Kiln A Stack) CM4 (East Arc Furnace Stack) CM5 (East Kiln B Stack) R1 (14HT101)* R2(14HT201)* R4(214HT201)* R5(228HT101)*	SO ₂	18	1700 mg/Nm³ at 10 % O ₂		
R2(14HT201)*	NOx expressed as NO ₂	172	1700 mg/Nm ³ at 10 % O ₂		
	SO ₂	2	1700 mg/Nm ³ at 10 % O ₂		
R3(214HT101)*	NOx expressed as NO ₂	access limitation. Emissions	-		
		heaters.			
R4(214HT201)*	NOx expressed as NO ₂				
R5(228HT101)*	NOx expressed as NO ₂		<u> </u>		
			<u> </u>		
R6 (30HT101)*	NOx expressed as NO ₂				
R7 (30HT102)*	NOx expressed as NO ₂	123			
	SO ₂	37	1700 mg/Nm3 at 10 % O2		

_

Internal project underway to assess the feasibility to install sampling ports on Refining heaters in order to undertake isokinetic sampling for PM. The PM emission results from the heaters should be similar to the PM emissions measured at another heater in a different plant since Refining heaters use the same fuel gas and similar design (Octene Train 1 HT101) with PM results of 10 mg/Nm³

Table 3.2: Summarised sampling results for SSO: Heaters (sub-category 2.1) (continued)

Point source code	Pollutant	Measured concentration: daily average	Reference AEL limit (mg/Nm³)
R8 (30HT103)*	NOx expressed as NO ₂	73	1700 mg/Nm³ at 10 % O ₂
(NOx expressed as NO2 73	16	1700 mg/Nm³ at 10 % O ₂
R9 (30HT104)*	NOx expressed as NO ₂	65	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	7	1700 mg/Nm³ at 10 % O ₂
R10 (30HT105)*	NOx expressed as NO ₂	60	1700 mg/Nm³ at 10 % O ₂
(11 11)	SO ₂	7	1700 mg/Nm ³ at 10 % O ₂
R11 (230HT101)*	NOx expressed as NO ₂	104	1700 mg/Nm ³ at 10 % O ₂
(======================================	SO ₂	26	1700 mg/Nm³ at 10 % O ₂
R12 (230HT102)*	NOx expressed as NO ₂	84	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	172	1700 mg/Nm ³ at 10 % O ₂
R13 (230HT103)*	NOx expressed as NO ₂	88	1700 mg/Nm ³ at 10 % O ₂
(11 11)	SO ₂	255	1700 mg/Nm ³ at 10 % O ₂
R14 (230HT104)*	NOx expressed as NO ₂	67	1700 mg/Nm ³ at 10 % O ₂
K14 (230H1104)	SO ₂	84	1700 mg/Nm ³ at 10 % O ₂
R15 (230HT105)*	NOx expressed as NO ₂	101	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	15	1700 mg/Nm ³ at 10 % O ₂
R17 (34HT101)*	NOx expressed as NO ₂	64	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	22	1700 mg/Nm ³ at 10 % O ₂
R18 (234HT101)*	NOx expressed as NO ₂	77	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	17	1700 mg/Nm ³ at 10 % O ₂
R19 (35HT101)*	NOx expressed as NO ₂	89	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	12	1700 mg/Nm ³ at 10 % O ₂
R20 (35HT102)*	NOx expressed as NO ₂	70	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	11	1700 mg/Nm ³ at 10 % O ₂
R22 (235HT101)*	NOx expressed as NO ₂	107	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	29	1700 mg/Nm ³ at 10 % O ₂
D02 (025UT400)*	NOx expressed as NO ₂	Measurements could not be done	1700 mg/Nm ³ at 10 % O ₂
R23 (235HT102)*	SO ₂	 due to electrical problems with sampling equipment. Measurement scheduled for FY17 quarter 2 	1700 mg/Nm³ at 10 % O ₂
R24 (35HT103)*	NOx expressed as NO ₂	35	1700 mg/Nm ³ at 10 % O ₂
,	SO ₂	13	1700 mg/Nm ³ at 10 % O ₂

-

Internal project underway to assess the feasibility to install sampling ports on Refining heaters in order to undertake isokinetic sampling for PM. The PM emission results from the heaters should be similar to the PM emissions measured at another heater in a different plant since Refining heaters use the same fuel gas and similar design (Octene Train 1 HT101) with PM results of 10 mg/Nm³

Point source code	Pollutant	or SSO: Heaters (sub-categor Measured concentration: daily average	Reference AEL limit (mg/Nm³)	
R25 (35HT104)*	NOx expressed as NO ₂	68	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	12	1700 mg/Nm ³ at 10 % O ₂	
R26 (35HT105)*	NOx expressed as NO ₂	57	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	12	1700 mg/Nm ³ at 10 % O ₂	
R27 (29HT101)*	NOx expressed as NO ₂	87	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	2	1700 mg/Nm ³ at 10 % O ₂	
R28 (29HT102)*	NOx expressed as NO ₂	76	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	25	1700 mg/Nm ³ at 10 % O ₂	
R29 (229HT101)*	NOx expressed as NO ₂	108	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	40	1700 mg/Nm ³ at 10 % O ₂	
R30 (33HT101)*	NOx expressed as NO ₂	86	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	7	1700 mg/Nm ³ at 10 % O ₂	
R31 (33HT102)*	NOx expressed as NO ₂	67	12	
,	SO ₂	10	1700 mg/Nm ³ at 10 % O ₂	
R32 (33HT105)*	NOx expressed as NO ₂	76	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	13	1700 mg/Nm ³ at 10 % O ₂	
R33 (233HT101)*	NOx expressed as NO ₂	54	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	110	1700 mg/Nm ³ at 10 % O ₂	
R34 (233HT102)*	NOx expressed as NO ₂	87	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	44	1700 mg/Nm ³ at 10 % O ₂	
R35 (233HT105)*	NOx expressed as NO ₂	87	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	44	1700 mg/Nm ³ at 10 % O ₂	
R36 (32HT101)*	NOx expressed as NO ₂	49	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	15	1700 mg/Nm ³ at 10 % O ₂	
R37 (32HT201)*	NOx expressed as NO ₂	53	1700 mg/Nm ³ at 10 % O ₂	
,	SO ₂	11	1700 mg/Nm ³ at 10 % O ₂	
R38 (32HT102)*	NOx expressed as NO ₂	57	1700 mg/Nm ³ at 10 % O ₂	
. (/	SO ₂	30	1700 mg/Nm ³ at 10 % O ₂	
R39 (232HT101)*	NOx expressed as NO ₂	86	1700 mg/Nm ³ at 10 % O ₂	
- /	SO ₂	133	1700 mg/Nm ³ at 10 % O ₂	
R40 (232HT201)*	NOx expressed as NO ₂	69	1700 mg/Nm ³ at 10 % O ₂	
, , , , , , , , , , , , , , , , , , , ,	SO ₂	33	1700 mg/Nm ³ at 10 % O ₂	
R41 (232HT102)*	NOx expressed as NO ₂	44	1700 mg/Nm³ at 10 % O ₂	
(,	SO ₂	121	1700 mg/Nm³ at 10 % O ₂	

^{*} Internal project underway to assess the feasibility to install sampling ports on Refining heaters in order to undertake isokinetic sampling for PM. The PM emission results from the heaters should be similar to the PM emissions measured at another heater in a different plant since Refining heaters use the same fuel gas and similar design (Octene Train 1 HT101) with PM results of 10 mg/Nm³

Table 3.3: Summarised sampling results for SSO: SCC (sub-category 2.2), WSA (sub-category 7.2), Carbo Tar (sub-category 3.3), Phenosolvan (sub-category 3.6) and Storage Tanks (sub-categories 3.3)

Point source code	Pollutant	Measured concentration: daily average	Reference AEL limit (mg/Nm³)		
	PM	209	330 mg/Nm ³ at 10 % O ₂		
SCC 1 stack	SO ₂	<2	3000 mg/Nm ³ at 10 % O ₂		
	NOx expressed as NO ₂	14	550 mg/Nm ³ at 10 % O ₂		
	SO ₂	260	2800 mg/Nm ³		
WSA	SO ₃	15	100 mg/Nm ³		
	NOx expressed as NO ₂	59	2000 mg/Nm ³		
P1/P2 (Unit 016)	VOCs	Outstanding sampling results from service provider. Measurements in accordance with	250 mg/Nm ³		
P3/P4 (Unit 216)	VOCs	licence condition 7.6 which requires Sasol to determine actual emission values from 1 April 2015 to 31 March 2018	250 mg/Nm³		
FFP 1, 2, 3, 4 and 5.	VOCs	5 105 This common vent will be addressed in the Tar Value Chain Phase 1 project as included in air quality improvement roadmap	250 mg/Nm ³		
CT 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13	VOCs	CT 1 (039TK101): Outstanding sampling results from service provider. CT 2 (039TK102): Outstanding sampling results from service provider. CT 3, 4, 5 (039 TK 103, 104, 105 - common vent) – Outstanding sampling results from service provider. CT 6, 7, 8, 9 (39TK112, 113, 114, 115): Tanks not in use and empty	250 mg/Nm ³		
Storage tanks (15TK101 and 215TK101)	VOCs	Refer to Table 3.7 – LDAR results	Tanks are also monitored as per Fugitive Emissions Monitoring Plan and are included in the LDAR program		
Progress on installation of floating devices	technology is an equally eff the first installation opportu February 2017, in line with	and governance processes on Evapostop discs, Safective alternative to internal floating roofs. Preparat nity on the first available tank which is planned to be the communicated implementation schedule, as per the 2014 postponement application.	ions are underway to be ready for e taken out of operation in		

Table 3.4: Summarised results for Water and Ash Plant (sub-category 8.1) (Quarter1: July to September 2015)

* These point sources were the subject of postponement applications in 2015. However, at that stage, there was not sufficient data available for the National Air Quality Officer and the local licensing authority to determine an alternative emission limit and on this basis, the emission limits contained in the Minimum Emission Standards were included. In accordance with licence condition 7.6 which requires Sasol to determine actual emission values from 1 April 2015 to 31 March 2018, Secunda Synfuels Operations is conducting additional monitoring which will be used to inform further postponement applications to be submitted.

	WATER & ASH PLANT: SAMPLING SOURCES										
POLLUTANTS	HOW1 (052CI-101)	HOW2 (252CI-101)	Reference maximum release rate in AEL	WA1 (052 WK-2102)	WA2 (052 WK-2202)	WA3 (252 WK-2102)	WA4 (252 WK-2202)	WRF	Reference maximum release rate in AEL	SW1 (353IN101)	Reference maximum release rate in AEL
Particulate matter (PM) [mg/Nm³ @ 10% O ₂]	44*	100*	400	132*	223*	244*	ıt's	33*	300	37*	25
CO [mg/Nm³ @ 10% O ₂]	<5.4*	1421*	75	2156*	3398*	2531*	o plar	94*	3000	171*	75
SO ₂ [mg/Nm ³ @ 10% O ₂]	171*	289*	50	208*	<7.7*	472*	due t	84*	70	<8.16*	50
NO _x expressed as NO ₂ [mg/Nm ³ @ 10 O ₂]	1875*	2810*	1600	215*	493*	606*	sept 15)	178*	500	185*	200
HCI [mg/Nm³ @ 10% O ₂]	<1.9*	<1.74*	10	<0.93*	<1.21*	<1.2*	S- VIn	94* 94* 178* <0.6* <0.12* 0.51* <0.01* <0.01* 4* <0.22* 0.02* 14.5 20-26 Aug 20-26 Aug	12	<1.57*	10
HF [mg/Nm ³ @ 10% O2]	<0.39*	0.35*	1	0.38*	<0.24*	0.85*	er 1 (J	<0.12*	20	<0.314*	1
Pb+As+Sb+Cr+Co+Cu+Mn+Ni+V [mg/Nm³ @ 10% O ₂]	1.06*	0.8*	21	0.21*	0.39*	1.79*	g Quarte ability	0.51*	1	0.47*	0.5
Hg [mg/Nm³ @ 10% O ₂]	<0.03*	<0.02*	0.27	<0.04*	<0.31*	<0.14*	during navaila	<0.01*	0.5	<0.019*	0.05
Cd+ TI [mg/Nm ³ @ 10% O ₂]	<0.01*	<0.009*	0.12	<0.006*	<0.007*	<0.015*	ested	<0.01*	0.12	<0.009*	0.05
TOC [mg/Nm³ @ 10% O ₂]	25*	21*	10	532*	NM¹	94*	s not t	4*	10	23*	10
NH ₃ [mg/Nm ³ @ 10% O ₂]	6*	1*	10	11*	19*	9*	Se was	<0.22*	30	0.8*	10
Dioxins + Furans [ng.Nm ⁻³ I-TEQ @ 10% O ₂]	<0.06*	0.2*	0.1	<0.023*	0.25*	0.02*	ig sour	0.02*	0.1	<0.025*	0.1
Exit Temperature [°C]	384	368	300-400	66	62	66	mplir	567	NA	368	300-400
Measured Oxygen (%)	18.4	18.4	NA	15.2	16.7	15.9	is sa	14.5	NA	17.1	NA
Sampling dates	02-04 Sept 2015	21-23 Jul 2015	NA	03-06 Aug 2015	09-11 Sept 2015	17, 24, 28 Jul 2015	두	20-26 Aug 2015	NA	30-31 Jul & 7 Aug 2015	NA
Normal corrected (N) = conditions of	of pressure (101.	.3 kPa) and tem	perature (0°C o	r 273 K) dry b	asis at 10% re	eference O ₂					

¹ NM: Not measured due to plant's unavailability.

Table 3.5: Summarised results for Water and Ash Plant (sub-category 8.1) (Quarter2: October to December 2015)

* These point sources were the subject of postponement applications in 2015. However, at that stage, there was not sufficient data available for the National Air Quality Officer and the local licensing authority to determine an alternative emission limit and on this basis, the emission limits contained in the Minimum Emission Standards were included. In accordance with licence condition 7.6 which requires Sasol to determine actual emission values from 1 April 2015 to 31 March 2018, Secunda Synfuels Operations is conducting additional monitoring which will be used to inform further postponement applications to be submitted.

	WATER & ASH PLANT: SAMPLING SOURCES										
POLLUTANTS	HOW1 (052CI-101)	HOW2 (252CI-101)	Reference maximum release rate in AEL	WA1 (052 WK- 2102)	WA2 (052 WK-2202)	WA3 (252 WK-2102)	WA4 (252 WK-2202)	WRF	Reference maximum release rate in AEL	SW1 (353IN101)	Reference maximum release rate in AEL
Particulate matter (PM) [mg/Nm³ @ 10% O ₂]	49*	11*	400	136*	186*	151*	137*		300	23*	25
CO [mg/Nm³ @ 10% O ₂]	<4*	<5*	75	2329*	2643*	2328*	1635*		3000	104*	75
SO ₂ [mg/Nm ³ @ 10% O ₂]	205*	84*	50	25*	<7*	16*	88*		70	11*	50
NO _x expressed as NO ₂ [mg/Nm³ @ 10 O ₂]	2021*	2617*	1600	499*	331*	499*	244*		500	159*	200
HCI [mg/Nm³ @ 10% O ₂]	2.7*	1.6*	10	2.1*	<1*	2.1*	1.7*	Ц	12.0	<3*	10
HF [mg/Nm³ @ 10% O2]	<0.3*	0.3*	1	0.6*	0.4*	0.3*	0.4*	npaig	20	<0.6*	1
Pb+As+Sb+Cr+Co+Cu+Mn+Ni+V [mg/Nm³ @ 10% O ₂]	0.043*	0.96*	21	0.55*	1.27*	2.0*	0.76*	Outstanding Sampling campaign	1	0.67*	0.5
Hg [mg/Nm³ @ 10% O ₂]	0.031*	0.051*	0.27	0.082*	<0.018*	0.084*	0.019*	Samp	0.5	0.016*	0.05
Cd+ TI [mg/Nm³ @ 10% O ₂]	<0.008*	<0.010*	0.12	0.009*	<0.010*	0.009*	0.007*	ding §	0.12	0.022*	0.05
TOC [mg/Nm ³ @ 10% O ₂]	24*	28*	10	348*	889*	440*	287*	utstan	10	63*	10
NH ₃ [mg/Nm ³ @ 10% O ₂]	2.9*	1.6*	10	45.0*	19.0*	19.0*	57.0*	Õ	30.0	2.4*	10
Dioxins + Furans [ng.Nm ⁻³ I-TEQ @ 10% O ₂]	<0.077*	0.6*	0.1	<0.025*	<0.1*	<0.035*	0.03*		0.1	0.69*	0.1
Exit Temperature [°C]	375	281	300-400	65	65	62	64		NA	322	300-400
Measured Oxygen (%)	17.1	17.06	NA	15.65	16.01	15.65	16.32		NA	17.62	NA
Sampling dates	3-4 Feb 16 & 18 Nov 15	4,5,25 Nov 2015	NA	3,4,12 Feb 16	27 Oct & 27 Nov 2015	26 Nov15& 11,16 Feb 16	26 Feb & 1- 2 Mar 2016		NA	29Oct,01Dec 15&16Feb16	NA

Table 3.6: Summarised results for Water and Ash Plant (sub-category 8.1) (Quarter3: January to March 2016)

* These point sources were the subject of postponement applications in 2015. However, at that stage, there was not sufficient data available for the National Air Quality Officer and the local licensing authority to determine an alternative emission limit and on this basis, the emission limits contained in the Minimum Emission Standards were included. In accordance with licence condition 7.6 which requires Sasol to determine actual emission values from 1 April 2015 to 31 March 2018, Secunda Synfuels Operations is conducting additional monitoring which will be used to inform further postponement applications to be submitted.

	WATER & ASH PLANT: SAMPLING SOURCES										
POLLUTANTS	HOW1 (052CI-101)	HOW2 (252CI-101)	Reference maximum release rate in AEL	WA1 (052 WK- 2102)	WA2 (052 WK-2202)	WA3 (252 WK-2102)	WA4 (252 WK-2202)	WRF	Reference maximum release rate in AEL	SW1 (353IN101)	Reference maximum release rate in AEL
Particulate matter (PM) [mg/Nm³ @ 10% O ₂]	18*	5*	400	149*	165*	333*	179*		300	23*	25
CO [mg/Nm³ @ 10% O ₂]	<5*	102*	75	2598*	2014*	3016*	2079*		3000	615*	75
SO ₂ [mg/Nm ³ @ 10% O ₂]	113*	510*	50	<7*	8*	<6*	103*	segue	70	<8*	50
NO _x expressed as NO ₂ [mg/Nm³ @ 10 O ₂]	2295*	4150*	1600	534*	389*	482*	295*	al challe	500	145*	200
HCI [mg/Nm³ @ 10% O ₂]	2.2*	<2.62*	10	<3.85*	<4.46*	9.1*	2.0*	ation	12.0	<1.54*	10
HF [mg/Nm³ @ 10% O2]	1.72*	0.75*	1	<2.5*	0.23*	1.49*	0.29*	oper	20	<0.31*	1
Pb+As+Sb+Cr+Co+Cu+Mn+Ni+V [mg/Nm³ @ 10% O ₂]	1.7*	1.03*	21	0.63*	0.50*	7.4*	1.34*	o Plant	1	0.24*	0.5
Hg [mg/Nm³ @ 10% O ₂]	<0.017*	<0.015*	0.27	0.13*	<0.29*	0.53*	0.14*	due 1	0.5	<0.01*	0.05
Cd+ TI [mg/Nm³ @ 10% O ₂]	<0.007*	<0.011*	0.12	0.014*	0.014*	0.064*	<0.014*	paign	0.12	0.008*	0.05
TOC [mg/Nm³ @ 10% O₂]	18*	18*	10	357*	747*	NM ²	223* 326*	Outstanding Sampling campaign due to Plant operational challenges	10	148*	10
NH ₃ [mg/Nm ³ @ 10% O ₂]	33.7*	1.9*	10	24.3*	22.0*	36.8*	78.1*	ampl	30.0	2.6*	10
Dioxins + Furans [ng.Nm ⁻³ l-TEQ @ 10% O ₂]	0.15*	0.24*	0.1	0.05*	0.14*	0.03*	0.04*	Inding S	0.1	0.03*	0.1
Exit Temperature [°C]	398	334	300-400	57	67	66	67	utsta	NA	364	300-400
Measured Oxygen (%)	17.91	18.45	NA	16.45	15.73	15.66	16.21		NA	16.75	NA
Sampling dates	26-27 & 29 Jan& 01Feb16	19, 21-22 & 25 Jan 2016	NA	14,20 Jan & 01 Jul 16	4 Feb, 15Apr, 16 May&16 Jun16	5,9 &12 Feb 2016	23-29 Feb & 4 Mar 16		NA	12 Jan & 5, 10-11 Feb16	NA

-

² NM: Not measured due to plant's unavailability.

Table 3.7: Summarised results for Water and Ash Plant (sub-category 8.1) (Quarter4: April to June 2016)

* These point sources were the subject of postponement applications in 2015. However, at that stage, there was not sufficient data available for the National Air Quality Officer and the local licensing authority to determine an alternative emission limit and on this basis, the emission limits contained in the Minimum Emission Standards were included. In accordance with licence condition 7.6 which requires Sasol to determine actual emission values from 1 April 2015 to 31 March 2018, Secunda Synfuels Operations is conducting additional monitoring which will be used to inform further postponement applications to be submitted.

		WATER & ASH PLANT: SAMPLING SOURCES									
POLLUTANTS	HOW1 (052CI-101)	HOW2 (252CI-101)	Reference maximum release rate in AEL	WA1 (052 WK- 2102)	WA2 (052 WK-2202)	WA3 (252 WK-2102)	WA4 (252 WK-2202)	WRF	Reference maximum release rate in AEL	SW1 (353IN101)	Reference maximum release rate in AEL
Particulate matter (PM) [mg/Nm³ @ 10% O ₂]	5*	52*	400	314*	88*	202*	50*		300	25*	25
CO [mg/Nm³ @ 10% O ₂]	49*	<5*	75	4212*	3121*	1898*	1898*		3000	9*	75
SO ₂ [mg/Nm ³ @ 10% O ₂]	172*	503*	50	<23*	<7*	124*	26*	segue	70	60*	50
NO _x expressed as NO ₂ [mg/Nm ³ @ 10 O ₂]	2295*	2979*	1600	324*	516*	446*	241*	operational challenges	500	220*	200
HCI [mg/Nm³ @ 10% O ₂]	<8*	13*	10	<8*	31*	<5.63*	<6*	ation	12.0	4.3*	10
HF [mg/Nm³ @ 10% O2]	<0.39*	<0.46*	1	0.6*	0.71*	<0.38*	<0.30*	oper	20	6.95*	1
Pb+As+Sb+Cr+Co+Cu+Mn+Ni+V [mg/Nm³ @ 10% O ₂]	0.4*	0.9*	21	0.35*	0.41*	1.13*	1.2*	Outstanding Sampling campaign due to Plant	1	0.28*	0.5
Hg [mg/Nm³ @ 10% O₂]	<0.018*	<0.02*	0.27	<0.041*	<0.053*	<0.063*	<0.21*	due t	0.5	<0.018*	0.05
Cd+ TI [mg/Nm³ @ 10% O ₂]	<0.008*	<0.01*	0.12	<0.012*	0.008*	<0.009*	0.015*	paign	0.12	0.009*	0.05
TOC [mg/Nm³ @ 10% O ₂]	25*	61*	10	482*	364*	355*	112*	g cam	10	141*	10
NH ₃ [mg/Nm ³ @ 10% O ₂]	5*	24*	10	42*	65*	30*	<0.72*	mplin	30.0	<0.52*	10
Dioxins + Furans [ng.Nm ⁻³ I-TEQ @ 10% O ₂]	0.12*	0.4*	0.1	0.064*	0.044*	0.035*	0.10*	ding Sa	0.1	0.043*	0.1
Exit Temperature [°C]	373	344	300-400	58	64	67	64	tstano	NA	366	300-400
Measured Oxygen (%)	17.96	18.32	NA	17.84	16.58	16.12	16.36	nO	NA	16.56	NA
Sampling dates	17-18 May & 14 Jun16	12-13 May & 09 Jun16	NA	28-30 Jun 16	20, 25 May & 10 Jun16	23-24 & 30 Jun 16	26 Apr, 05 May 19 Jul 16		NA	27 May, 3 Jun 27 Jun 16	NA
Normal (N) = conditions of pressure	tions of pressure (101.3 kPa) and temperature (0°C or 273 K) dry basis at 10% reference O ₂										

Table 3.7 LDAR summarised results from June 2015 - July 2016

Unit	Number of points measured	Number of leaks detected
Unit 012-Trains 1-2	4 996	47
Unit 012-Trains 4-5	5 362	57
Unit 014	636	4
Unit 015	2 265	0
Unit 020	12 602	123
Unit 023-Train 1	3 108	440
Unit 023-Train 2	3 065	352
Unit 030	12 036	37
Unit 032	29 214	553
Unit 033	5 930	41
Unit 039	4 120	4
Unit 214	549	3
Unit 215	1 866	5
Total	85 749	1 665

A total of 1665 leaks were identified during the monitoring campaign. The final leak rate stands at 1.94% for the monitoring campaign at Secunda Synfuels Operations. Leak reports were issued to all unit managers to initiate repairs as reasonably possible.

Table 3.8 Dust fall out results

Restriction areas	Dust fall rate (D) [mg/m²/day, 30 days average)	Permitted frequency of exceeding dust fall rate
Residential areas	D < 600	2 within a year, not sequential months
Non-residential areas	600 < D < 1200	2 within a year, not sequential months
	Dust fall out results below are within the	e specification for non-residential areas:
Location of bucket	Coal Separation East (CP1)	Coal Separation West (CP2)
October 2015	63	105
November 2015	229	217
December 2015	87	138
January 2016	34	25
February 2016	36	27
March 2016	89	75
April 2016	65	99
May 2016	35	87
June 2016	62	68

4. EMISSION TRENDS

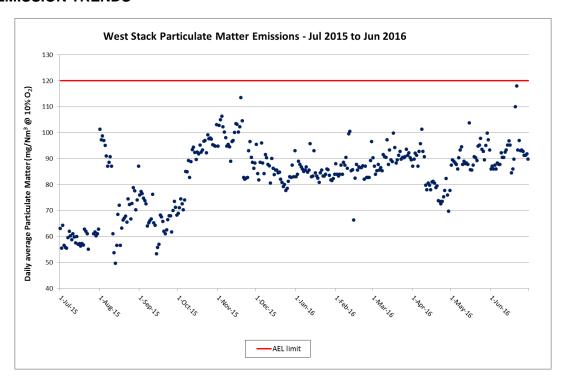


Figure 1: PM emissions for western stack

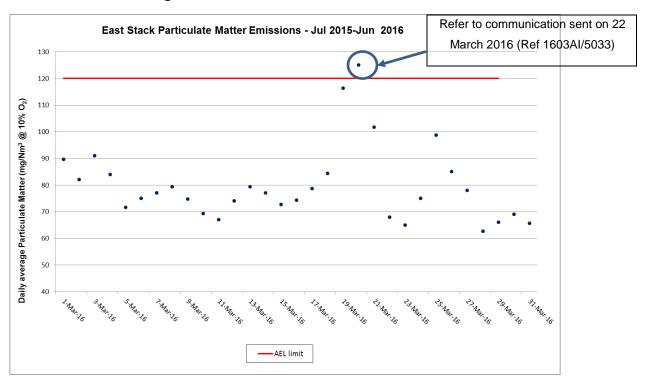


Figure 2: PM emissions from eastern stack

As per communication reference 1603Al/5033 dated 22 March 2016: The daily average particulate matter (PM) emissions from the east stack (point source code B2) exceeded the maximum emission rate on the 20^{th} of March 2016. This was due to operational issues on boilers 3, 5, 7, 8 and 9 at steam plant east.

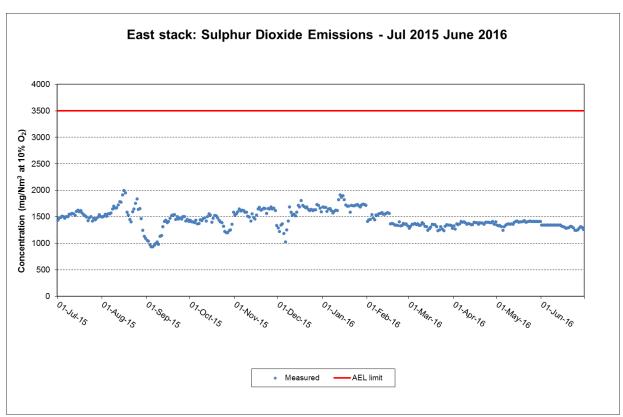


Figure 3: SO₂ emissions from eastern stack (point source code B2 (U243))

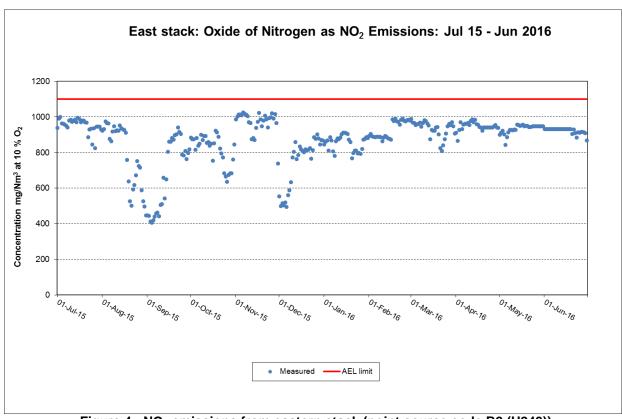


Figure 4: NO₂ emissions from eastern stack (point source code B2 (U243))

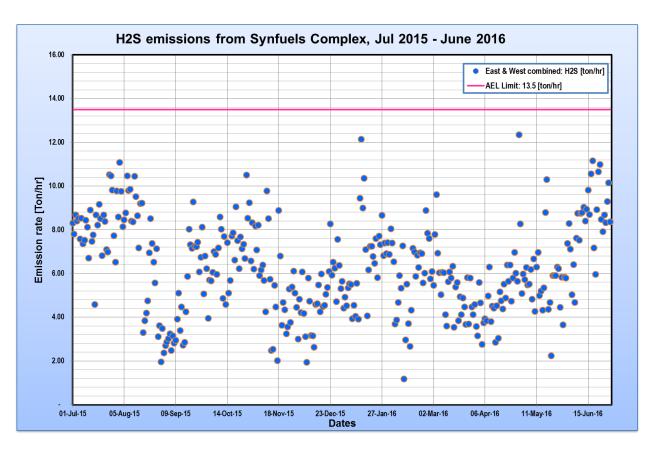


Figure 5: H₂S emissions from Sulphur Recovery 1 July 2015 to June 2016

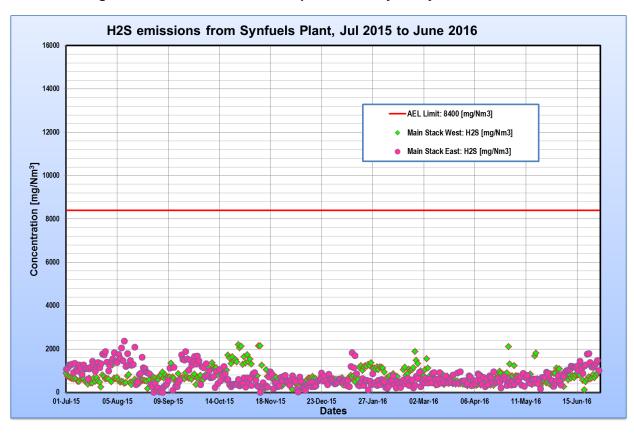


Figure 6: H₂S emissions from Sulphur Recovery 1 July 2015 to June 2016

5. COMPLIANCE AUDIT REPORTS

No compliance audit was conducted in the financial year 2016 (1 July 2015 to 30 June 2016). An external certification audit was conducted by DQS which included ISO 14001. It was concluded that the management system supports sustainability and continuous improvement.

6. MAJOR UPGRADE PROJECTS

Table 3.3.1: Major upgrades projects for Synfuels

Project description	Planned completion date	Status
VOC abatement project in tar value chain (installation of Regenerative Thermal Oxidisers)	April 2017	The construction team is working against a tight schedule to commission ahead of 31 March 2017.

7. GREENHOUSE GAS EMISSIONS

In the absence of the promulgation of the GHG Reporting Regulations, Sasol voluntarily submitted its 2015 GHG inventory to the national Department of Environmental Affairs using the prescribed IPCC mass balance approach.

8. PUBLIC CONSULTATION FORUM

In accordance with the AEL requirements, two public consultation sessions were held in Secunda (2 December 2015 and 27 June 2016) and in eMbalenhle (25 November 2015 and 27 June 2016). The attendance registers, as well as the presentations that were communicated on the respective days, are attached.

9. ACTIONS TAKEN ON COMPLAINTS RECEIVED

Complaint 1

Date complaint received	Type of complaint	Internal/External complaint
23 July 2015	Dust	Internal
Description of complaint		

Description of complaint

Yellow dust was observed at the maintenance workshop close to the road loading area. It was expected that the dust was coming from Unit 219 which is situated close to the area.

Actions taken

The process at unit 219 is a batch process. It was confirmed with Unit 219 that the plant was operating under normal conditions. The dust was visible during the batch process at that time.

Complaint 2

Date complaint received	Type of complaint	Internal/External complaint
31 July 2015	Smell	External
Description of complaint		

Strong unpleasant odour the last 2 days in Secunda - during this time of year with sinusitis issues, the smell aggravates the sinusitis

Actions taken

The data recorded at the Secunda Club air quality monitoring station shows higher than normal concentrations of hydrogen sulphide (H₂S). The reason for the H₂S concentrations was due to higher than normal emissions from the sulphur recovery plants, although we were still within the limit as specified by our atmospheric emission license. During the winter periods the atmospheric conditions are very stable (unfavourable) with poor dispersion of emissions from our stacks, especially during early mornings. The temperature during the last 2 days was also much lower (cold front) which aggravated the situation.

Complaint 3

Date complaint received	Type of complaint	Internal/External complaint
7 August 2015	Smell	Internal
Description of complaint		

Description of complaint

An unpleasant odour was observed in the growth and management building, possibly VOC's. The central coordination team was requested to ask all plants to investigate possible sources to the oily water sewer.

Actions taken

A strong alcohol smell was observed from the oily water sewer channels. It was recommended that the doors to the buildings be opened to allow the smell to dissipate. After further investigation, high levels of methanol concentrations were reported in samples taken from the oily water sewer, but no root cause could be identified. It is suspected that alcohol product accidentally entered the oily water sewer, causing the smell.

Complaint 4

Date complaint received	Type of complaint	Internal/External complaint
12 August 2015	Dust	Internal
Description of complaint		

Is the equipment at unit 219 operating under normal conditions, since we see yellow sulphur dust from the two vents at the plant.

Actions taken

The process at unit 219 is a batch process. It was confirmed with Unit 219 that the plant was operating under normal conditions. The dust was visible during the batch process at that time.

Complaint 5

Date complaint received	Type of complaint	Internal/External complaint
3 November 2015	Smell	External
Description of complaint		

Mr. Van Rensburg phoned 20:10 complaining about bad smells from Synfuels. Upon further discussion with Mr. Van Rensburg, he mentioned that the smells were like sulphur and they were more prevalent during early hours of the morning and in the evening.

Actions taken

The data recorded at our ambient air quality monitoring station located in the Secunda residential area, shows that the wind direction was from the Synfuels factory. Although the Sulphur Recovery plants were operating within our atmospheric emission license limit, the hydrogen sulphide smell was due to the wind direction from the plant, as well as poor dispersion during the morning and evenings. The ambient monitoring station H2S data confirmed the higher concentrations which were emitted from our stacks.

10. HIGHVELD PRIORITY AIR QUALITY MANAGEMENT PLAN AND OFFSET PROGRAM

Please find reporting document on Highveld Priority Air Quality Management Plan in Annexure 2. The offsetting plan to reduce PM and SO_2 emissions (including a Stakeholder Engagement Report with detailed Comments and Responses Report) was submitted to the National Air Quality Officer and licensing authority on 18 May 2016. Progress on the offsetting plan was also provided at the bi-annual public consultation session (see slides attached in Annexure 1). Baseline campaign activities commenced in eMbalenhle in June 2016. In Lebohang innovative solutions have been shortlisted and shared with communities and Sasol is currently in the planning phase for implementing these trial solutions. The solutions shortlisted are: insulating serviced informal houses with polyurethane foam together with a stove swop and surfacing of roads to reduce dust. Veld fire management activities continue to be managed by the SSO emergency management team.

Annexure 1

Public consultation session attendance list and presentation

Annexure 2

Highveld Priority Air Quality Management Plan